Rachit Nigam Research Statement

The exponential growth of computational power has transformed every aspect of society. However, per-
formance scaling for general-purpose processors has plateaued; while transistor counts have kept growing,
the fraction of a chip that can be kept active is limited by power constraints. These trends have lead to a
Cambrian explosion in the design and use of specialized accelerators which are customized to particular ap-
plications and use domain-specific programming models. However, the deployment of accelerators into the
computational stack is limited by tools designed for traditional, general-purpose processors.

Hardware description languages (HDLs) operate with circuit-level abstractions insufficient for rapid and
productive design, and most accelerators expose primitive, low-level programming abstractions. These spe-
cialized programming models are only accessible to experts. I will design the next generation of program-
ming systems that make it dramatically easier to design and use customized hardware. I will address these
challenges by developing novel techniques built upon foundational ideas in programming languages
and compilers and ground them in the challenges of building real, end-to-end hardware-software sys-
tems. My work seeks to address the fundamental tension between high-level abstractions—which offer
composability and productivity—and low-level abstractions—required for precise control and integration—
through the following principles:

1. Reason about target constraints: High-level programming models lose performance by hiding con-
straints about target abstractions. Can we expose these constraints while retaining our abstractions?

2. Build reusable infrastructure: Efficiently mapping high-level languages to low-level abstractions re-
quires deep domain expertise. Can we centralize this expertise by building reusable infrastructures?

3. Enrich low-level abstractions: Low-level languages offer efficiency but use behaviors that leak across
abstraction boundaries. Can we design efficient and correct interfaces to encapsulate these behaviors?

My PhD work has explored these principles by building programming systems for hardware design. I
have identified problems with existing, high-level programming models for hardware design and remedied
them [1,2]. I have built a widely-used compiler infrastructure for transforming high-level languages to
efficient hardware designs [3,4,5], and designed a new hardware description language that enable efficient,
modular composition of circuits [6,7]. In recent collaborations, I have explored the problem of building
new programming models for custom hardware [8,9].

Reasoning about Target Constraints

High-level synthesis (HLS) tools raise the level of abstraction in hardware design by compiling languages
such as C and C++ into circuit descriptions. Such tools abstract the physical constraints of hardware gen-
eration, such as physical memories only allowing a single operation every cycle, and allow users to control
hardware generation using code annotations. However, this leads to an unpredictable programming model:
applying an “unroll” annotation to a loop will allocate more resources in the circuit, but there will be no
performance benefit because all memory accesses are serialized.

My work on Dahlia [1] identified the problem: HLS tools abstract away important target constraints;
specifically, they abstract away the limitations of low-level memories. Sub-structural type systems—which
can express constraints such as “a variable may only be used once”—seem like a good fit to reason about
such memory constraints. However, existing type systems could not reason about termporal reuse of hardware
resources; while a memory may only allow a single operation in a given cycle, it can be used again in the next
cycle. I built a new type system to reason about temporal reuse and created a programming model where
well-typed programs have predictable resource-performance trade-offs: a program that uses more resource
has better performance. Dahlia was highlighted at the MIT PL review: “[Dahlia] demonstrates the potential
of programming languages methods in [high-performance computing] spaces to not only reason about correctness
but also performance”.



Rachit Nigam Research Statement

This insight—that memory constraints dramatically affect the HLS programming model—has enabled
the design of new abstractions. In order to parallelize computations, HLS compilers need to statically predict
the memory access patterns; while sufficient for dense computations, such as linear algebra, this limitation
means that important computations, such as graph processing, are hard to support. In our recent work [2],
we have redesigned the memory abstractions used by HLS tools. Instead of simple, software-like arrays, we
use a new memory interface language to declaratively specify memory interfaces: latency requirements, physical
partitioning for parallelism, managing conflicting accesses. The tool then automatically co-optimizes and
generates the memory and compute implementations.

Finally, reasoning about target constraints has also proven useful for programming energy efficient pro-
cessors. Such processors eschew the complex circuitry needed to automatically extract parallelism from pro-
grams; instead users must explicitly specify parallelization and data reuse using low-level, domain-specific
instructions such as vector shuffles. With Facebook Reality Labs and collaborators, I designed a compiler [8]
that transforms programs using equality saturation (a technique for efficiently rewriting programs) to auto-
matically expose opportunities for data reuse and generates low-level implementations that match perfor-
mance of expert-written code.

Building Reusable Infrastructures

Tools like HLS and Dahlia raise the level of abstraction but compiling them to efficient circuits requires
deep expertise and technical investment. Furthermore, for each new tool, this effort must be repeated. Mod-
ular compiler infrastructures, such as LLVM, use intermediate languages to centralize the work of analyzing,
optimizing, and compiling programs to multiple targets. Building such a modular infrastructure to com-
pile high-level languages to efficient circuits brings its own set of unique challenges: (1) circuits must be
optimized for physical objectives, such as power and resource usage, in addition to latency and throughput,
(2) different targets, like ASICs and FPGAs, require different optimization trade-offs, and (3) optimizations
must exploit the extra structure available in designs generated from high-level programs.

I designed the Calyx infrastructure [3], a modular, reusable infrastructure for accelerator generators.
Calyx uses a novel intermediate language that intermixes software-like control operators (loops, condition-
als, sequencing), with HDL-like structural abstractions such as circuit instantiation and wire connections.
This representation enables Calyx’s pass-based compiler optimize to designs using control-flow informa-
tion present in circuits generated from high-level languages. Calyx has been adopted by the LLVM CIRCT
project [10] as a core dialect, enabling compilation of PyTorch and C++ programs to hardware. It has been
used to design several frontends and accelerator generators: Halide [11], TVM [12], AMC [2], systolic
arrays [13], pangenomics computations [14], and polynomial approximations [15]. Finally, Calyx is a suc-
cessful open-source project with more than a dozen contributors, 300 stars on GitHub, and is the primary
subject of a submitted NSF Pathways to Enable Open-Source (POSE) grant that I helped write.

Reusable infrastructures like Calyx magnify the impact of each research project: tools built using Calyx
are immediately accessible to the rest of the ecosystem. For example, we designed a debugging infrastruc-
ture for Calyx [5] (distinguished artifact award) which provides software-like debugging abstractions—
breakpoints, source-level stepping—to any frontend that compiles to Calyx. Calyx users in the LLVM CIRCT
ecosystem were able to immediately use this tool to quickly debug their designs. Similarly, in ongoing
work [4], we extended Calyx to support reasoning about latency-sensitive interfaces, which are less com-
positional but more efficient than Calyx’s existing latency-insensitive interfaces. By extending Calyx with
these new abstractions, we transparently improved the performance of existing frontends and enabled new
optimizations that were impossible before.

Tools like Calyx enable automatic generation of accelerators but do not address the programmability
challenge. With collaborators at MIT, I have been working on the Exo infrastructure [16] which uses user-
level scheduling [17] to map high-level programs to accelerators. We have designed new mechanisms [9]



Rachit Nigam Research Statement

to abstract and bundle schedules into reusable application- and accelerator-specific libraries which make
programming new accelerators easier.

Enriching Low-level Abstractions

Hardware description languages (HDLs) offer low-level control: designers have precise control over how
hardware is instantiated and its timing. However, this efficiency comes at a cost; structural and temporal
constraints are not well encapsulated. For example, a multiplier might have a latency of four cycles but be
able to process new inputs every cycle due to internal pipelining. The signature of this multiplier, however,
will look identical to a multiplier that takes 32 cycles to process inputs and isn’t pipelined. Users must in-
stead read out-of-source documentation to understand the latency-sensitive behavior of such modules or use
latency-insensitive interfaces [18] which use extra signals to abstract away timing behaviors. If such modules
are composed incorrectly, or their timing behavior is slightly altered, the design will silently break with
hard-to-debug data corruption issues.

I designed Filament [6], a new HDL, to enable efficient and correct composition of latency-sensitive de-
signs. Filament enriches HDL signatures with timing information that tracks when signals are available and
how modules are internally pipelined. Next, Filament’s type system, inspired by separation logic, checks the
design at compile-time and guarantees that there are no pipelining bugs. If there are potential problems,
instead of hours of painful debugging, the users are provided with actionable error messages. Filament has
seen rapid impact. The Jane Street hardware acceleration team is exploring the feasibility of integrating
Filament by porting existing designs written in the HardCaml [19] to Filament. We are also working with
the Google XLS [20] team to build a new integrated system that combines the power of Filament’s type sys-
tem with high-level hardware generation. Both teams have stated the concision and generality of Filament’s
type system as a primary motivation for this integration.

When building complex hardware designs, users parametrize their implementation: the bitwidth of the
computation, the number of circuits to generate, the parallelism expose in the interface. Parametrization
induces exponentially large design spaces making traditional, test-based methodologies insufficient at es-
tablishing correctness. My ongoing work [7] adds symbolic reasoning to Filament’s type system allowing it to
prove absence of pipelining bugs in entire design spaces. This extension also allows Filament to provide
stable interfaces to designs generated from high-level programming models; by abstracting over their timing
behaviors, Filament can ensure that no matter what module is generated, the composition will be correct.

Future Work

The golden age of computer architecture [21] offers exciting opportunities for democratizing the design
and use of application-specific hardware. Building upon the principles explored in my PhD, I will design
new programming systems across the hardware-software gap to explore these problems.

Rethinking the HDL abstraction. Rust, inspired by work on Cyclone [22], pioneered a new model of sys-
tems programming where users can rely on the type system to eliminate a large class of memory-safety and
concurrency issues. I will redesign the register transfer level (RTL) abstraction of HDLs to provide strong
compile-time guarantees that enable users to build optimized hardware designs, publish and use libraries,
and rapidly explore design spaces with hardware generators. Filament demonstrates that this is possible
for particular classes of circuits; I plan to extend it to a general-purpose HDL that can reason about arbitrary
hardware and use it to build a new, compositional hardware design infrastructure. There are several inter-
esting challenges and opportunities: How can Filament reason about latency-insensitive interfaces [23] and
provide strong guarantees such as deadlock freedom [24]? How can we reason about target constraints of
physical implementations—clock domains, multi-cycle paths, and wire loads [25]—which are needed to
design real systems-on-chip (S0Cs)? Can Filament-style reasoning be instantiated as a gradual type system
for traditional HDLs and work in tandem with existing formal verification tools like SystemVerilog Asser-



Rachit Nigam Research Statement

tions to provide scalable and compositional guarantees [26]? Solving these problems will require cross-stack
collaborations with researchers working on formal methods, chip design, and physical implementations.

Integrating hardware design and synthesis. Hardware synthesis tools transform circuit descriptions,
written in HDLs, into physical layouts, which can then be fabricated as chips or simulated on field-programmable
gate arrays (FPGAs). However, there is an abstraction gap here: a functionally correct design might turn
out to be impossible to realize within the required resource and frequency constraints. Like HLS tools, this
is because HDLs do not reason about the target constraints of synthesis tools. For example, a particularly
long wire may limit the frequency, but the user has no way of knowing in advance; the length of the wire
is decided during the synthesis process, leading to long iteration cycles. I will design new programming
models to integrate hardware design with synthesis. For example, common routing problems, like long
wires, can be resolved by adding additional registers, but a synthesis tool cannot automatically make this
change because it affects the timing behavior of the circuit. By enriching the HDL-synthesis interface to
expose design parametrization [7], the tool can automatically resolve some of these problems and, by using a
Filament-like system, guarantee that the changes are correct. This is a timely problem: renewed interest in
open-source flows for chip design [27] offers the opportunity to redesign the interface between HDLs and
synthesis tools and dramatically reduce the time and effort needed to go from HDL programs to real chips.

Co-designing languages, compilers, and architectures. Accessible software abstractions are key to the
adoption of new accelerators [28]. However, new accelerators offer inflexible programming models while
users want high-level abstractions. Bridging this impossible gap is the compiler’s job: map computations
to the accelerator’s limited resources while exploiting spatial and temporal parallelism. I will co-design
languages, compilers, and architectures to more appropriately balance this task.

1. Reason about target constraints. Programming models for accelerators should expose the constraints
of target. For example, using coarse-grained reconfigurable arrays (CGRAs) [29] requires careful, tem-
poral reuse of physical resources. I will design new domain-specific languages (DSLs) that allow users
to express temporal reuse explicitly, thereby simplifying the task of the compiler, and providing more
user-level control. Such DSLs can then be enriched with Dahlia-like type systems [1] to help guide the
user towards better performance trade-offs.

2. Build reusable infrastructures. Shared infrastructures can allow us to rapidly design programming
models for diverse accelerators. Such an infrastructure much factor out commonalities while being
extensible enough to support accelerator-specific reasoning. Vectorized reconfigurable dataflow archi-
tectures [30] offer a natural, architecture-level split: each vector lane can be reconfigured for a par-
ticular computation. I will design a multi-tier compiler with a high-level vectorizing compiler to map
computations to vector lanes while a lower-level, domain-specific compiler decides how to reconfigure
each lane.

3. Enrich low-level abstractions. Programming interfaces for accelerators are impoverished and require
deep knowledge about the invariants of the architecture. I will design new interface languages to specify
structural and temporal constraints of the architectures. By connecting such languages to type and
logic systems, the interface will provide compositional correctness guarantees and enable design of a
diverse array of programming models for each architecture.

Productive design and use of accelerators will usher the next era of computational scaling, achieved by
new programming systems that fundamentally rethink existing abstractions. I am excited to apply ideas
from programming languages, compilers, and computer architecture to build tools that accelerate the mod-
ern computing stack.



Rachit Nigam Research Statement

References

[1] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye, Apurva Koti,
Adrian Sampson, and Zhiru Zhang. Predictable accelerator design with time-sensitive affine types. In
PLDI, 2020. doi:10.1145/3385412.3385974.

[2] Andrew Butt, Matt Hoffman, Rachit Nigam, and Zhiru Zhang. Customizing memory structures for
high-level synthesis. In preparation, 2023.

[3] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. A compiler infrastructure for accel-
erator generators. In ASPLOS, 2021. doi:10.1145/3445814.3446712.

[4] Caleb Kim, Pai Li, Anshuman Mohan, Andrew Butt, Adrian Sampson, and Rachit Nigam. Unifying
static and dynamic intermediate languages for accelerator generators. Under review, 2024.

[5] Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson. Stepwise debugging for
hardware accelerators. In ASPLOS, 2023. doi:10.1145/3575693.3575717.

[6] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian Sampson. Modular hardware design
with timeline types. In PLDI, 2023. doi:10.1145/3591234.

[7] Rachit Nigam, Ethan Gabizon, Edmund Lam, and Adrian Sampson. Correct and compositional hard-
ware generators. Under review, 2024.

[8] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson. Vectorization
for digital signal processors via equality saturation. In ASPLOS, 2021. doi:10.1145/3445814.3446707.

[9] Yuka Ikarashi, Samir Droubi, Kevin Qian, Rachit Nigam, Alex Reinking, Gilbert Louis Bernstein, and
Jonathan Ragan-Kelley. Productive abstractions for user-scheduable languages. Under review, 2024.

[10] The CIRCT Authors. CIRCT: Circuit IR compilers and tools, 2023. URL: https://circt.1llvm.org.

[11] Sergi Granell Escalfet. Accelerating Halide on an FPGA. Master’s thesis, Universitat Politeécnica de
Catalunya, 2023.

[12] Tiangi Chen et al. TVM: An automated end-to-end optimizing compiler for deep learning. In OSDI,
2018.

[13] Hsiang-Tsung Kung. Why systolic architectures? IEEE Computer, 1982.

[14] The Pollen Authors. Pangenomics graph queries in Calyx, 2023. URL: https://github.com/cucapra/
pollen.

[15] Benjamin Carleton and Adrian Sampson. Polynomial approximations in Calyx, 2023. URL: https:

//github.com/cucapra/calyx-nums.

[16] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley. Exo-
compilation for productive programming of hardware accelerators. In PLDI, 2022.

[17] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P.
Amarasinghe. Halide: A language and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In PLDI, 2013.

[18] Kevin E. Murray and Vaughn Betz. Quantifying the cost and benefit of latency insensitive communi-
cation on FPGAs. In FPGA, 2014.

[19] Jane Street. HardCaml: Register transfer level hardware designin OCaml, 2022. URL: https://github.

com/janestreet/hardcaml.

[20] Google. XLS: Accelerated hardware development, 2023. URL: https://google.github.io/x1ls/.


https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3575693.3575717
https://doi.org/10.1145/3591234
https://doi.org/10.1145/3445814.3446707
https://circt.llvm.org
https://github.com/cucapra/pollen
https://github.com/cucapra/pollen
https://github.com/cucapra/calyx-nums
https://github.com/cucapra/calyx-nums
https://github.com/janestreet/hardcaml
https://github.com/janestreet/hardcaml
https://google.github.io/xls/

Rachit Nigam Research Statement

[21] JohnL.Hennessy and David A. Patterson. A new golden age for computer architecture. Communications
of the ACM, 2019.

[22] Trevor Jim, ] Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of C. In USENIX ATC, 2002.

[23] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli. Theory of latency-
insensitive design. ICCAD, 2001.

[24] Muralidaran Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits.
IEEE Press, 2009.

[25] Ron Ho, Kenneth W Mai, and Mark A Horowitz. The future of wires. Proceedings of the IEEE, 2001.

[26] Peitan Pan, Shunning Jiang, Yanghui Ou, and Christopher Batten. Towards gradually typed hardware
description languages. Languages, Tools, and Techniques for Accelerator Design, 2023.

[27] The OpenROAD Project. OpenROAD: An open-source RTL-to-GDS flow, 2023. URL: https://github.
com/The-0penROAD-Project/0penROAD.

[28] Sara Hooker. The hardware lottery. Communications of the ACM, November 2021.

[29] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki, Nathan Beckmann,
and Brandon Lucia. A programmable, energy-minimal dataflow compiler and architecture. In MICRO,
2022.

[30] Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu Prabhakar, and Kunle Olukotun.
Capstan: A vector RDA for sparsity. In MICRO, 2021.


https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD

