
MODULAR ABSTRACTIONS FOR EFFICIENT
HARDWARE DESIGN

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Rachit Nigam

May 2025

© 2025 Rachit Nigam

ALL RIGHTS RESERVED

MODULAR ABSTRACTIONS FOR EFFICIENT HARDWARE DESIGN

Rachit Nigam, Ph.D.

Cornell University 2025

Hardware design is primarily concerned with efficiency: the need to implement

the fastest circuit using the least amount of resources and power. Coupled with

the staggering amounts of resources poured into designing, manufacturing, and de-

ploying hardware, optimization decisions dominate the design of tools for hardware

design. Modularity, or the separation of concerns, allows for the design of reusable

components and has been a primary driver of the software revolution. However, in

hardware design, it has taken a backseat; modular design obfuscates key proper-

ties of circuits which may lead to inefficient implementation. In the specialization

era, where performance gains are driven by designing hardware for specific com-

putations, the need for modular and efficient abstractions for hardware design is

dire.

This thesis identifies explicit reasoning about time as a key ingredient for the

design of such abstractions and embodies them in three systems. First, Dahlia,

an imperative language that compiles to hardware and uses time-sensitive reason-

ing to ensure that surface programs compile to efficient hardware. Second, Calyx,

a compiler and an intermediate language for transforming Dahlia-like languages

into hardware descriptions. Calyx bridges the gap between computational descrip-

tions and circuit implementations using a novel intermediate language that mixes

software-like control flow and hardware-like structural constructs. Calyx further

resolves the tension between precise modeling of cycle-level time and scalable

compiler optimizations by exploiting the observation that time-sensitive execu-

tion schedules are a refinement of time-insensitive ones. Finally, Filament, a new

hardware description language that directly models cycle-level constraints in the

interfaces of modules and ensures, at compile-time, that designs do not have any

structural hazards. Together, these systems demonstrate that appropriate model-

ing of time at each abstraction layer is crucial for building hardware design tools

that are both modular and efficient. This work provides a foundation for scaling

up hardware design in the era of specialized accelerators.

BIOGRAPHICAL SKETCH

Rachit Nigam was born in 1997 in Lucknow, Uttar Pradesh, India. He completed

his Bachelor of Science from the University of Massachusetts Amherst in 2018

and graduated from the Honors College with the thesis “Execution Control for

JavaScript”. During his PhD at Cornell, Rachit moved several times to be a vis-

iting scholar at Facebook Reality Labs, the University of Washington, and the

Massachusetts Institute of Technology. Rachit will start as an Assistant Professor

of Electrical Engineering and Computer Science at the Massachusetts Institute of

Technology. Rachit wrote this dissertation from Jamaica Plain, Boston.

iii

To my mother, Dr. Manisha Nigam.

iv

कौन कहता है िक आसमां पे सुराख नहीं होता

कोई तबीयत से पत्थर तो उछालो यारो।

- दषु्यतं कुमार

Who says that we can’t make holes in the sky

Just throw a stone with earnestness, my friends

- Dushaynth Kumar

v

ACKNOWLEDGEMENTS

Many people incorrectly believe that a PhD is about research. A PhD, like all other

endeavors in life, is about people. My PhD is no exception: the work contained in

this dissertation is an amalgamation of ideas and effort of dozens of people; without

them, this work would neither be possible nor worth doing.

Sam Thomas was my first research mentee and watching him grow as a re-

searcher made me realize that I will stay an academic for far too long. His unparal-

leled creativity coupled with his insatiable curiosity made him a joy to work with.

His fingerprints are all over Dahlia and Calyx. Christophe Gyurgik is a force of na-

ture and led the creation of the TVM and CIRCT frontends for Calyx. Caleb Kim

and Pai Li together created the Piezo extensions for Calyx which finally enabled it

to compete with industrial tools. Ethan Gabizon and Edmund Lam worked on the

parametric extensions to Filament and shared in my joy of building type systems.

Ted Bauer, Kenneth Fang, Yuwei Ye, YooNa Chang, Karen Zhang, YoungSoek

Na, Crystal Hu, Apurva Koti, Alma Thaler, Nathaniel Navarro, Parth Sarkar, and

Ananya Goenka all tolerated my mentoring; I hope they learned from me as much

as I learned from them.

Certain papers came about as excuses to work with friends. During the long

year of the pandemic, between discussions of books and games, Griffin and I worked

together on building a simulator for Calyx. Pedro lured me in with his delicious

cooking and taught me some category theory (a worthwhile sacrifice); he and I

worked on Filament’s theory. Unlike me, Alexa thought that program synthesis

could be used to make compilers work, so we built one together; she was right.

Anshuman joined the lab in my fourth year, and we became quick friends over our

shared love of food. He applied his impeccable sense of style to the Piezo paper and

pushed it through to the end. Andrew Butt shared my passion for building robust

vi

tools that people want to use and collaborating with him has been exceptionally

fun.

Despite my best efforts, my friends kept me sane. Jonathan emphasized the

need for shoe horns and joie de vivre. Alex, Armin, and Shreyas were fantastic

roommates and easy to live with. Ryan, Rolph, Kiran, and Raunak played music

with me. Jesse, Kate, Soham, Mahimna, and Kwang were the original wingz crew

and made my first year fun. Sam provided a safe haven in Princeton when I was fed

up with Ithaca. Greg and Kiran went on long bike rides with me, full of discussions

about everything and nothing. Soham repeatedly told me to quit my PhD and

pursue something with real stakes. On this and many other unimportant things, we

disagreed. Vishnu was an ever-present anchor in my journey; seeing him throughout

my time as a PhD student reminded me that there are other important things in

life. Rini and Malena are unapologetically passionate about who they are and

everything they do; I am unreasonably lucky to have met them.

After the pandemic, I exiled myself from Cornell and spent a wonderful year at

the University of Washington within the PLSE group. Max, Gus, Anjali, Oak, Thia,

Andrew, Vishal, and Gilbert made it an easy home. In my time there, Zach Tatlock

showed me how to build a community. Instead of graduating, I moved to MIT to

hang out with Jonathan Ragan-Kelley’s group. Jonathan set the benchmark for

what good taste in research looks like for me. Serena, Zoe, Andy, Nishant, Sylee,

Jeremy, Anushka, and Edwin gave me a sense of home in Boston.

Many people spent their precious time mentoring me. Chris Batten and Zhiru

Zhang taught me about computer architecture and made sure I worked on impor-

tant problems, instead of merely interesting ones. Nate Foster always demanded a

clarity of thought and made sure I did not forget my PL roots. Stephen Neuendorf-

fer and Chris Leary spent countless hours teaching me about important problems

vii

in compilers and hardware design. Shriram Krishnamurthi spent a summer teach-

ing me the beauty of programming languages. As a freshman at UMass, I stumbled

into Arjun Guha’s office and rambled about algorithms for constructing permuta-

tions. Unperturbed, he offered to do research with me and gave me my first shot.

Adrian Sampson always chose to be kind to me, even when I was not kind to myself.

Long after I have forgotten our technical discussions, I will remember this about

him.

My family is my rock and my source of strength and perseverance. My father,

Sharad Nigam, took a leap of faith and sent me to the United States to pursue

my dream of learning computer science. My sister, Ishita, at the age of six, gave

up our time together so I could go study. Finally, my mother, Dr. Manisha Nigam,

gave up her career, her time, and her youth to help me become who I am.

viii

CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Contents . ix
List of Tables . xiv
List of Figures . xv

1 Introduction 1
1.1 End of Scaling . 1
1.2 Tools to Build Hardware . 3
1.3 My Thesis . 5
1.4 Organization . 6
1.5 Previously Published Material . 7

2 Programming Models for Hardware Design 9
2.1 Basics of Hardware Design . 9
2.2 Hardware Description Languages 11
2.3 High-Level Programming Models 13

2.3.1 High-Level Synthesis . 13
2.3.2 Domain-Specific Languages 14

2.4 Summary . 16

3 Predictable Accelerator Design with Time-Sensitive Affine Types 17
3.1 Predictability Pitfalls in Traditional HLS 18

3.1.1 An Example in HLS . 20
3.1.2 Enforcing the Unwritten Rules 25

3.2 The Dahlia Language . 26
3.2.1 Affine Memory Types . 26
3.2.2 Ordered and Unordered Composition 28
3.2.3 Memory Banking . 30
3.2.4 Loops and Unrolling . 32
3.2.5 Combine Blocks for Reduction 34
3.2.6 Memory Views for Flexible Iteration 35

3.3 Formalism . 40
3.3.1 Syntax . 41
3.3.2 Large-Step Semantics . 41
3.3.3 Type System . 42
3.3.4 Small-Step Semantics . 43
3.3.5 Desugaring Surface Constructs 44
3.3.6 Soundness Theorem . 45

3.4 Evaluation . 46
3.4.1 Implementation and Experimental Setup 46

ix

3.4.2 Case Study: Unrestricted DSE vs. Dahlia 46
3.4.3 Dahlia-Directed DSE & Programmability 48

3.5 Discussion . 52

4 A Compiler Infrastructure for Automatic Hardware Generation 53
4.1 Design Considerations . 54
4.2 Overview by Example . 56

4.2.1 Reduction Tree in Calyx . 57
4.2.2 Optimizing Accelerator Designs 58
4.2.3 Structure and Control . 59

4.3 The Calyx Intermediate Language 59
4.3.1 Components . 60
4.3.2 Cells and Wires . 60
4.3.3 Groups and Control . 62
4.3.4 Control Statements . 64
4.3.5 Attributes . 66
4.3.6 Synopsis . 66

4.4 Targeting Calyx . 66
4.4.1 Systolic Array Generator . 67
4.4.2 Dahlia . 71
4.4.3 Summary . 73

4.5 Compiling Calyx to Hardware . 74
4.5.1 Calling Convention . 75
4.5.2 Compilation Workflow . 75
4.5.3 Compiling Control Statements 77

4.6 Optimizing Calyx Programs . 79
4.6.1 Resource Sharing . 79
4.6.2 Component Sharing via Live-Range Analysis 81

4.7 Discussion . 83

5 Compositional, Time-Sensitive Reasoning for Hardware Genera-
tion 84
5.1 Static Abstractions for Calyx . 84

5.1.1 Static Structural Abstractions 85
5.1.2 Static Control Operators . 87
5.1.3 Unification Through Semantic Refinement 88

5.2 Targeting Static Abstractions . 89
5.2.1 Systolic Array . 89
5.2.2 Dahlia Compiler . 91

5.3 Compilation . 92
5.3.1 Collapsing Control . 93
5.3.2 FSM Instantiation . 97
5.3.3 Wrapper Insertion . 98

5.4 Optimizations . 99

x

5.4.1 Static Inference and Promotion 99
5.4.2 Schedule Compaction . 101
5.4.3 Latency-Aware Component Sharing 103

5.5 Discussion . 104

6 Evaluating Calyx 106
6.1 Implementation of the Calyx Infrastructure 106
6.2 Systolic Arrays . 107

6.2.1 Design Considerations . 108
6.2.2 Implementation . 109
6.2.3 Evaluation . 110

6.3 Dahlia Compiler . 112
6.4 Effect of Optimizations . 114

6.4.1 Resource Sharing . 114
6.4.2 Impact of Static Abstractions 115

7 Modular Hardware Design with Timeline Types 120
7.1 Example . 121

7.1.1 Traditional Hardware Description Languages 121
7.1.2 Filament . 123
7.1.3 Checking Timing Behavior 124
7.1.4 Pipelining . 126
7.1.5 Area-Throughput Trade-offs with Filament 128
7.1.6 Summary . 131

7.2 The Filament Language . 131
7.2.1 Events and Timelines . 132
7.2.2 Components . 133
7.2.3 Instances . 135
7.2.4 Invocations . 135
7.2.5 Connections . 136
7.2.6 Interfacing with External Components 137

7.3 Type System . 138
7.3.1 Delay Well-Formedness . 139
7.3.2 Well-Formedness . 140
7.3.3 Initiation Intervals . 141
7.3.4 Safe Pipelining . 142

7.4 Compilation . 144
7.4.1 Low Filament . 145
7.4.2 Generating Explicit Schedules 146
7.4.3 Lowering to Calyx . 147
7.4.4 Optimizing Continuous Pipelines 148

7.5 Formalization . 149
7.5.1 Semantics . 150
7.5.2 Type System . 151

xi

7.6 Evaluation . 152
7.6.1 Expressivity Evaluation . 153
7.6.2 Accelerator Design with Filament 155

8 Correct and Compositional Hardware Generators 160
8.1 Motivating Example . 162

8.1.1 Initial Implementation . 163
8.1.2 Parameterized Design . 165
8.1.3 Integrating with External Generators 167
8.1.4 Summary . 170

8.2 The Parafil Language . 170
8.2.1 Parameters . 171
8.2.2 Parametric Signatures . 171
8.2.3 Bundles . 172
8.2.4 Compile-time Constructs . 173
8.2.5 Reusing Instances . 173

8.3 Bottom-up parameterization . 174
8.3.1 Interfaces for Hardware Generators 175
8.3.2 Stable Interfaces for Generator Composition 175

8.4 The Parafil Compiler . 176
8.4.1 Type Checking . 177
8.4.2 Partial Evaluation . 178
8.4.3 Elaboration . 179
8.4.4 Bundle Elimination . 181

8.5 Composing External Generators . 182
8.5.1 Type Checking . 182
8.5.2 Elaboration . 183

8.6 Parameterized FFT . 184
8.6.1 FFT Building Blocks . 184
8.6.2 Iterative FFT . 187
8.6.3 Streaming FFT . 189

8.7 Enriching High-Level Design . 192
8.7.1 DSLX Language . 192
8.7.2 Integrating with Parafil-gen 193
8.7.3 Iterative FFT with XLS . 194

9 Conclusion 197
9.1 Retrospective . 197
9.2 Open Questions . 198

Acronyms 224

Glossary 227

xii

A Dahlia Semantics and Soundness 228
A.1 Semantics . 228
A.2 Proof of soundness . 232

A.2.1 Progress . 234
A.2.2 Preservation . 237

B Filament Semantics and Soundness 244
B.1 Syntax . 244
B.2 Semantics . 245
B.3 Type System . 247
B.4 Type Soundness . 251

xiii

LIST OF TABLES

5.1 Interfaces between types of control. 92

7.1 Latencies of Aetherling Designs. Highlighted latencies are reported
incorrectly by Aetherling. 154

7.2 Resource usage and frequency of conv2d designs. Best values high-
lighted. 158

xiv

LIST OF FIGURES

3.1 Overview of a traditional high-level synthesis toolchain and how
Dahlia layers type safety on top. 19

3.2 Dense matrix multiplication in HLS-friendly C. 20
3.3 Three accelerator implementations for code in Figure 3.2. 20
3.4 Look-up table count (top) and execution latency (bottom) for the

kernel in Figure 3.2 with varying parameters. 21
3.5 Hardware schematics for each kind of memory view. Highlighted

outlines indicate added hardware cost. 36
3.6 Abstract syntax for the DCore core language. 40
3.7 Results from exhaustive design space exploration for gemm-blocked. 47
3.8 The design spaces for three MachSuite benchmarks. Each uses a

color to highlight one design parameter. 49

4.1 Calyx describes the reduction tree using its split representation.
The execution schedule makes the control flow explicit while en-
capsulate connections between hardware modules. Done signals
(§4.3.3) elided from group definitions. 56

4.2 Architecture for a 2×2 by 2×2 matrix-multiply systolic array. High-
lighted boxes show some of the groups used by the control. 68

4.3 Process of compiling Dahlia programs. Each statement becomes a
group and control flow is encoded using control operators. 71

4.4 Calyx realizes the execution schedule by encoding it with struc-
tural components. After the CompileControl pass (c), the fsm
register encodes the current state for the seq statement. 74

4.5 Resource sharing example. Since incr_r0 and incr_r1 do not run
in parallel, they can share their adders. 79

4.6 A Calyx program along with the corresponding parallel control flow
graph (pCFG). 82

5.1 A Calyx component that computes (a + b) × c ÷ d. The static
extensions are shown in green. 85

5.2 New compilation flow. Static operators are optimized (§5.4) and
compiled (§5.3) to pure Calyx abstractions. 92

5.3 Compilation flow for static abstractions. Static groups and control
are inlined (§5.3.1) and the relative timing guards are reified using
counters (§5.3.2). Dynamic control operators interface with com-
piled code using wrapper groups (§5.3.3). 92

5.4 Schedule compaction uses data dependencies to generate an as-
soon-as-possible schedule. 101

xv

6.1 Our 2×2 systolic array with a dynamic post op. The buffers in the
post op controller are not necessary for static post ops. Green is
static and orange is dynamic. Input memories (L0, L1, T0, T1) may
have non-fixed length. 107

6.2 Performance and FPGA resource utilization of two implementa-
tions of a fused matrix-multiply–ReLU kernel on Calyx-compiled
systolic arrays. We compare static and dynamic interfaces for the
ReLU unit. 111

6.3 Resource and cycle count comparison for Dahlia-generated Calyx
designs and HLS designs for PolyBench benchmarks. Missing un-
rolled bars indicate that the benchmark was not unrollable in Dahlia.113

6.4 Effects of optimization passes. All graphs use logarithmic scales. . 114
6.5 Cycle count and LUT usage for the 19 linear algebra Polybench

benchmarks, relative to Vitis HLS (lower is worse). For cycle counts:
Piezo takes a geometric mean of 0.82× compared to Calyx and
2.54× compared to Vitis. For LUTs: Piezo takes 0.52× and 0.65×
compared to Calyx and Vitis, respectively. 117

6.6 Performance of Piezo designs compiled with various optimization
orderings (lower is worse). Results are relative to SC→SH. The cy-
cle counts are identical across the configurations SC and SC→SH,
which is why no blue bars appear in (a). 118

7.1 ALU implementation and waveforms generated when executing ad-
dition and multiplication. 121

7.2 Difference between sequential and pipelined processing. A pipelined
module can process multiple inputs at the same time. 126

7.3 Implementations of 8-bit restoring division demonstrating area-
throughput trade-off. Filament’s type system ensures that each
implementation is correctly pipelined and introduces no resource
reuse conflicts. 128

7.4 Overview of the Filament language. Programs are a sequence of
component definitions which correspond to individual modules. The
signature of the component is parameterized using events. The
body of component consists of three types of statements: Instanti-
ations, connections, and invocations. 132

7.5 Signature and waveform diagram. The component allows pipelined
execution or reuse after two cycles allowing overlapped execution.
Shaded regions represent unknown values. 133

7.6 Overview of the Filament type system. The fundamental constraints
of hardware design imply other constraints. Well-formedness en-
sures that one execution of a component is correct. Safe pipelining
ensures that pipelined executions of the component are correct. . . 139

xvi

7.7 Compilation Flow. Filament programs are type checked (§7.3) and
lowered to Low Filament (§7.4.1) programs. Lowering (§7.4.2) in-
stantiates explicit FSMs to schedule invocation. Finally, Low fila-
ment programs are compiled to Calyx [116] which optimizes the
design and generates hardware circuits. 145

7.8 Formal semantics of Filament where command is defined as a log-
transformer. Typing judgements track the active timeline of an
instance and ensure they are used in a disjoint manner. 149

7.9 Components used in the design of Filament-based conv2d convo-
lution. The stencil component provides the last three inputs and
is either connected to the naive multiplier or a Reticle-generated
DSP cascade. 156

8.1 Shift register implementations in Verilog and Parafil. Parafil im-
plementation provides a timeline type to each value of the bundle
which allows it enforce Filament’s type safety guarantee. 170

8.2 Parafil’s output parameters abstract details such as latency and
the type system ensure correct composition. 175

8.3 Parafil’s elaboration pass compiles parametric programs into Fila-
ment programs. After elaboration, the Filament compiler’s backend
lowers the program to synthesizable hardware. 180

8.4 The Parafil gen framework. Tools define stable interfaces for the
modules, used by the type checker, and a command-line interface,
used by the elaboration pass. 181

8.5 Interface for the FPExp module generated by FloPoCo. The type
signature uses an output parameter to abstract over the latency.
The configuration file describes how to invoke the tool and extract
an output parameter value. 182

8.6 Building blocks for the Pease FFT. Complex numbers are repre-
sented as two element bundles. 185

8.7 Iterative FFT that reuses butterfly components within and across
stages. 187

8.8 Iterative FFT. Darker points have deeper pipelines and shapes rep-
resent different amounts of reuse. 189

8.9 Streaming FFTs in Parafil and Spiral compared to optimized designs.190
8.10 Butterfly module in XLS. 194
8.11 Parafil FFTs using XLS butterflies. Darker points have more pipeline

stages and different shapes represent different amount of sharing. . 196

B.1 Syntax of desugared Filament programs. 244

xvii

B.2 Log-transfomer semantics for Filament’s core language. Each com-
mand produces a log (L) which maps events (T) to multisets of
reads (R) and writes (W). Component definitions produce partial
logs (P) by mapping availabilities of inputs to reads and availabil-
ities of outputs to writes. 245

xviii

CHAPTER 1

INTRODUCTION

Hardware design was once the exclusive domain of computer architects, who

delivered exponential performance improvements to the software stack without ex-

posing the murky details of transistors. With the end of physical scaling laws that

powered this growth, high-performance and energy-efficient computing has increas-

ingly become reliant on specialized accelerators—circuits that trade off computa-

tional generality for efficiency. However, the tools used to design such accelerators

use the same, low-level abstractions that are used to design general-purpose pro-

cessors. This dissertation examines the design of new programming models for

hardware design through the dual lenses of efficiency—the primary concern of

hardware design—and modularity—the ability to reuse components—to enable

hardware design to scale up in the era of accelerators.

1.1 End of Scaling

Early computer design rode the dual waves of Dennard scaling [48]—which allowed

for boosted clock frequencies without additional power—and Moore’s law [110]—

which predicted shrinkage of transistor feature sizes and better unit economics

allowing for increased transistor counts in the same die area. This was an era of

plenty: general-purpose processors could justify using increasingly complex mech-

anisms to extract parallelism from single-threaded programs while simultaneously

providing improved clock frequencies. The software stack transparently benefited

from these improvements and programmers left hardware design to the architects.

In the early 2000s, Dennard scaling ended, leading to dramatic challenges with

1

increasing clock frequencies. However, Moore’s law still provided additional tran-

sistors on the chip and so processor designs pivoted to using multicore designs

which utilized multiple independent processors capable of executing programs in

parallel. However, this change did not improve the performance of single-threaded

programs. To utilize the parallel processing capabilities of multicore systems, pro-

grammers had to redesign fundamental abstractions [16, 131] and use specialized

abstractions [19, 121] which expose the parallelism of the machine.

However, multicore scaling is limited by two factors. First, even if a workload

can perfectly utilize the parallelism of the machine, it is limited by Amdahl’s

law [8, 77]: if 90% of the workload is parallelizable and 10% is sequential, the

maximum achievable speedup is 10× of the original program since the performance

of the sequential section becomes the bottleneck in the presence of excess parallel

resources. Second, a chip design is limited by the need to efficiently disperse heat

leading to a power wall [53, 93]. While modern chips have continued to see increased

transistor counts, they are unable to keep all the transistors powered-on at the same

time. These dual problems mean that multicore scaling has provided a limited

solution to the end of Dennard scaling.

Accelerators tackle both challenges by sacrificing computational generality for

efficiency [75]. By focusing on particular computations, accelerators can utilize

specialized computational circuits and memory hierarchies that exploit domain-

specific knowledge. This tackles the Amdahl’s law limit by improving the perfor-

mance of sequential code as well as the power wall challenge since accelerators can

be strategically powered-on for specific computations. Originally reserved for well-

understood computations like encryption and audio-video decoding, accelerators

have seen use in diverse areas like networking [10, 99, 113, 114], machine learn-

2

ing [31, 32, 61, 84], genomics [59, 152], databases [28, 158, 159], zero-knowledge

proofs [137], etc. Like the multicore era, this ubiquitous adoption has led to a

reexamination of fundamental system-level abstractions [62, 100], vertically inte-

grated, language-to-accelerator compiler pipelines [9, 64, 126, 135], and widespread

interest in customized hardware design.

This dissertation re-examines another fundamental abstraction in the context

of these trends: the languages and tools used to design and implement hardware.

1.2 Tools to Build Hardware

Chip design progresses roughly at four levels of abstraction: functional, timed,

netlist, and physical. Higher-level abstractions are suited for design-space explo-

ration of architectural features such as functional units, memory hierarchies while

lower-level abstractions decide the physical characteristics—placement of logical

gates, routing, fan-out factors—which influence the performance of the final de-

sign. Because of the costs involved, chip design largely progresses in a waterfall

manner: once the architectural features are finalized at the functional level, they

are not changed during physical modeling.1

Early hardware design occurred at the physical level since it allowed engineers

to have low-level control on the placement, sizing, and routing between transistors.

Hardware description languages (HDLs) like Verilog [78] and VHDL [79] were

introduced to model the behavior of these physical circuits and to catch bugs before

implementation occurred. Because of this, HDLs were primarily designed for fast
1Certain physical constraints—such as the length of wires between compute and memory—

might require architectural changes and are only discovered during the final stages. However,
chip design methodologies aim to limit the impact of such changes [148].

3

and efficient simulation [55]. However, with the introduction of standard cell-based

design [106] and improvements in tools for logic synthesis [22], users were able to

compile HDL programs to circuit implementations. The convenience of using the

same description for specification and implementation quickly allowed HDLs to

become the dominant tool for hardware design.

However, the fundamental mismatch between the simulation-focused abstrac-

tions used by HDLs and the physical nature of circuits has led to repeated problems

in scaling up hardware design [146, 147]. Modular design—the ability to separately

implement components and reuse them across programs—has been a key mecha-

nism for scaling up the software ecosystem but has largely been absent from hard-

ware design. While designers can license coarse-grained intellectual property (IP)

blocks like processor cores or USB drivers, there is little reuse of lower-level building

blocks. This is because, unlike software programming, hardware design is primarily

concerned with efficiency; if modularity obfuscates details for efficient design, it is

discarded. Given this, designers end up implementing their own components for

each design to achieve maximum performance.

Modularity in hardware design is a widely studied topic with many proposed

solutions: using software programs to generate circuit implementations [107, 139],

embedding HDLs in software languages [1, 4, 12, 13, 40, 81, 101], transactional

semantics for hardware design [21, 119], transforming existing software languages

to circuit implementations [5, 25, 124, 157, 167], and most recently, using domain-

specific languages for hardware design [29, 44, 52, 73, 74, 89, 94, 95]. While promis-

ing in different ways, these solutions have not provided a principled answer to the

fundamental tension between efficiency and modularity.

4

1.3 My Thesis

Explicitly reasoning about time enables the design of modular and effi-

cient abstractions for hardware design.

Hardware design, unlike software programs, has to reason about structure—

the physical circuits that perform computations—and time—how the circuits are

reused over time to perform logical computations. Programming abstractions for

hardware design have focused on precisely expressing structure but not time. For ex-

ample, traditional HDLs like Verilog and VHDL, owing to their roots as simulation-

focused languages, use event-driven abstractions to model the behavior of hardware

(“if event E occurs, perform action A”). While this yields efficient simulators, it

does not provide first-class reasoning for clock signals which are the primary way

to model time in synchronous circuits. Similarly, while high-level programming

models provide mechanisms to control how much circuitry is allocated—through

code annotations that unroll loops or mark out particular arrays to be mapped

onto physical memories—they do not reason about the timing constraints of these

resources. Finally, compilers that transform high-level programs to circuit imple-

mentations pick representations of timing behavior and corner themselves into

inflexible or inefficient implementation choices.

This dissertation demonstrates that by appropriately modeling time, each ab-

straction layer can provide efficient and predictable programming models. The

representation of time necessarily depends on the level of abstraction: cycle-level

time might be appropriate for new HDLs but too low-level for domain-specific

languages.

5

1.4 Organization

This dissertation presents three systems developed at different levels of abstractions

to support my thesis:

• Dahlia (§3) C-like programming language that compiles to circuit imple-

mentations. Dahlia models the timing constraints of circuit resources using

time-sensitive affine types—a novel, sub-structural type system—and demon-

strates that well-typed programs express predictable resource-performance

trade-offs.

• Calyx (§§ 4–6), an intermediate language (IL) and a compiler infrastruc-

ture for transforming domain-specific languages to hardware designs. Ca-

lyx accomplishes the tightrope walk of providing precise hardware descrip-

tion with scalable compiler analyses by intermixing software-like control-

flow operators—loops, conditionals—with hardware-like structure—modules,

wires, cycle-level timing. This is enabled by two ideas: groups which are sim-

ilar to basic blocks in software compilers but instead encapsulate hardware

structure, and time-sensitive reasoning through refinement. Together, Calyx

has enabled the design of several frontend compilers, is adopted by the LLVM

CIRCT compiler infrastructure, provides dozens of optimizations, and is the

basis of several tools that utilize its IL.

• Filament (§§ 7 and 8), a new hardware description language that guarantees

that well-typed programs do not have pipelining bugs. Unlike other typed

HDLs [12, 13, 119], Filament’s type system reasons about resource reuse

and ensures that pipelining cannot introduce hard-to-debug issues caused by

structural hazards. Furthermore, because Filament utilizes a type system to

6

ensure this property, once compiled, Filament designs are as efficient as hand-

written HDL programs. We extend Filament’s guarantees to parameterized

programs allowing us to eliminate pipelining bugs from families of circuits.

Chapter 2 overviews the evolution of programming models for hardware design.

Chapter 3 describes the Dahlia programming language and time-sensitive affine

type which enable predictable resource-performance trade offs. Chapters 4 and 5

overview the design of the Calyx intermediate language and compiler infrastruc-

ture. Chapter 6 evaluates the Calyx infrastructure by describing several frontend

compilers and analyzing the impact of its optimization passes. Chapter 7 discusses

the Filament hardware description language which uses a type system to guarantee

that hardware designs are free of pipelining bugs at compile time. Chapter 8 ex-

tends Filament’s guarantees to parameteric programs enabling it to reason about

families of circuits. Chapter 9 concludes the thesis by discussion future directions.

1.5 Previously Published Material

This thesis draws upon the work of the following previously published materials:

• Chapter 3: Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li,

Theodore Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang.

Predictable accelerator design with time-sensitive affine types. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation

(PLDI), 2020. doi: 10.1145/3385412.3385974 [115].

• Chapters 4 and 6: Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian

Sampson. A compiler infrastructure for accelerator generators. In ACM In-

7

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2021. doi: 10.1145/3445814.3446712 [116].

• Chapters 5 and 6: Caleb Kim, Pai Li, Anshuman Mohan, Andrew Butt,

Adrian Sampson, and Rachit Nigam. Unifying static and dynamic intermedi-

ate languages for accelerator generators. In ACM SIGPLAN Conference on

Object Oriented Programming, Systems, Languages and Applications (OOP-

SLA), 2024. doi: 10.1145/3689790 [86].

• Chapter 7: Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian

Sampson. Modular hardware design with timeline types. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

2023. doi: 10.1145/3591234 [117].

• Chapter 8: Rachit Nigam, Ethan Gabizon, Edmund Lam, and Adrian Samp-

son. Correct and compositional hardware generators. 2024. doi: arXiv:

2401.02570 [118].

8

CHAPTER 2

PROGRAMMING MODELS FOR HARDWARE DESIGN

This chapter overviews various programming models for hardware design from

traditional hardware description languages (HDLs) to high-level programming mod-

els that transform software languages to circuit implementations.

2.1 Basics of Hardware Design

The goal of hardware design is to build the smallest, fastest, most energy-efficient

circuit to perform the task you want. For example, a general-purpose processor

aims to execute an instruction stream as fast as possible within its power and

area budgets. We provide a brief overview of the physical constraints involved in

hardware design to discuss the merits of various programming models for hardware

design.

Registers, combinational logic, and clock Digital circuits are built using

two fundamental components: registers and combinational logic. Registers are col-

lections of flip-flops, each storing a single bit of information. Combinational logic

consists of logic gates, such as AND or XOR, which implement pure boolean functions.

Each logic gate has a propagation delay, the time it takes for the output to change

after the input changes. A digital circuit can be viewed as a cloud of combinational

logic connected to a large register that stores the state of the circuit.

Most digital designs use a clock signal to synchronize register updates due

to varying propagation delays. At the start of each clock cycle, registers update

their output wires, and the signals propagate through the combinational logic. The

9

resulting outputs are then written back into the registers at the end of the clock

cycle. To ensure synchronous updates, the clock signal must be slower than the

propagation delay of the slowest path through the combinational logic, known as

the critical path. The critical path determines the maximum clock frequency.

Power, performance, and area (PPA) The three metrics used to evaluate a

design. The area of the design accounts for implementation resources such as tran-

sistors and wires while performance refers to the application or task-specific mea-

sures as the instructions-per-cycle (IPC) of a processor. The power consumption of

a design depends on the transistor technology, clock frequency, and the resources

used and is divided into dynamic power—consumed when transistors switch—and

static power—lost due to leakage effects. For example, increasing the number of

registers will increase the static power—since each register will leak power—while

increasing the clock frequency will increase the dynamic power—since the circuit

switches more often.

There are only trade-offs PPA constraints induce a complex trade-off space

for hardware designs: there are rarely obvious optimizations. For instance, a long

combinational path might limit a circuit’s clock frequency. Adding a register can

break the computation into two steps, but this has both functional and physical

consequences. By splitting the computation across two cycles, the output appears

one cycle later requiring adjustments to signal consumers. The additional registers

increase power consumption and the clock signal improvement might be negated by

the signal delay. Effective hardware design requires understanding the design space

and exploiting trade-offs to achieve PPA goals. Programming models for hardware

design should help designers express and manage these trade-offs.

10

2.2 Hardware Description Languages

Early HDLs [36, 56, 76] evolved as specification languages intended to describe the

behavior of digital circuits. HDLs used the register transfer level (RTL) abstraction

which views hardware designs as a cloud of logic connected to a set of registers.

Hardware implementation, on the other hand, used structural abstractions such as

netlists, which represent hardware as a collection of logic gates connected by wires.

These abstractions were reconciled after the VLSI revolution [106], which stan-

dardized transistor features, and improvements in logic synthesis techniques [22],

which automatically transformed RTL programs to netlists. Verilog was originally

designed to simulate designs described at both RTL and netlist levels [55], and

repurposed for hardware implementation with logic synthesis tools like Synopsys’s

Design Compiler [2].

Event-driven abstractions RTL languages like Verilog provide event-driven

constructs to model the behavior of circuits. The following example implements

the logic for a half-adder:

reg sum, carry;
always @(a or b) begin

sum = a ^ b;
carry = a & b;

end

The always construct in Verilog models event-driven behavior: when the values

of either a or b change, the computation within the block is triggered, updating

the values of sum and carry (which might themselves trigger a computation). On

the other hand, a netlist-level implementation instantiates low-level modules like

XOR and AND, which might be a part of the standard library for a particular process

design kit (PDK), to represent the hardware design closer to physical reality:

11

reg sum, carry;
XOR xor1 (.a(a), .b(b), .y(sum));
AND and1 (.a(a), .b(b), .y(carry));

The netlist simply describes the connections between modules; it has no event-

driven behavior. Logic synthesis tools transform event-driven models of hardware

to netlists and need to infer intent from source programs which is often tricky to

get right [146, 147]. The abstraction mismatch has a deeper consequence: key prop-

erties of hardware designs, like clock signals and resource reuse are not described

within a hardware description. Instead, these properties are implicitly reasoned

about by programmers and inferred by tools.

Parametric design HDLs like SystemVerilog [11] (a set of extensions to Verilog)

provide compile-time constructs like loops and conditionals to produce different cir-

cuits based on compile-time values. For example, an adder might be parameterized

using the input bitwidth and produce different circuits based on the compile-time

value. Parameterization can enable design reuse since users can customize compo-

nents based on the particular context. Unlike more powerful metaprogramming

systems in software languages [54], these language constructs cannot introspect on

the circuit being generated and therefore cannot express advanced transformations

like automatically adding extra registers to break up long computations.

Embedded hardware description languages Embedded hardware descrip-

tion languages (eHDLs) embed themselves in a software host language like Scala,

Python, or OCaml to provide metaprogramming capabilities to users [12, 40, 81,

101]. This is accomplished by providing a deep embedding of the HDL constructs

within the software language allowing it to construct, manipulate, and introspect

HDL programs. While such languages improve design productivity, they rely on

12

RTL abstractions and are bound by their limitations.

2.3 High-Level Programming Models

High-level programming models eschew the RTL abstractions of HDLs and instead

transform familiar computational abstractions of software languages, to circuit im-

plementations. Broadly, there are two approaches for this: transforming general-

purpose programming languages like C or Python to circuit designs, or designing

custom domain-specific languages (DSLs) to express specific classes of computa-

tions and transforming them to hardware designs.

2.3.1 High-Level Synthesis

Instead of mapping simple operators such as adders, high-level synthesis (HLS)

tools aim to automatically compile entire programs written in software languages

into hardware designs. Early tools [5, 91] avoided the inherently parallel nature

of HDLs and instead adopted the sequential semantics of software languages. In

these languages, each assignment would correspond to a single clock cycle.1 For

example, both the assignments x = a+ b and y = a+ b+ c+ d would be scheduled

to execute in one cycle. This relationship between program order and cycle-level

behavior is often understated but is essential for effective hardware synthesis and

providing sufficient control to designers to meet PPA objectives.

Modern tools incorporate pipeline synthesis [71, 162, 167] to automatically

break long datapath computation and generate control logic. The relationship be-
1Cong et al. [43, §2] provide a more complete overview of these early tools.

13

tween program order and cycle-level timing is often completely abstracted away in

such tools and touted as a feature to enable software programmers to build their

own hardware. However, in practice, meeting PPA objectives requires substantial

understanding of the cycle-level behavior of generated hardware and structuring

code in particular ways to achieve the desired microarchitecture.2

The goal of high-level programming models is to provide improved design pro-

ductivity. A key aspect of design productivity is being able to understand and

optimize a design. However, existing languages often obscure the relationship be-

tween program order and cycle-level behavior, leading to unpredictable trade-offs.

Chapter 3 overviews the design of a new HLS language that uses a novel type sys-

tem to connect program order to cycle-level behavior, enabling designers to make

predictable and informed trade-offs.

2.3.2 Domain-Specific Languages

DSLs [20, 87, 88, 129, 145, 149, 166] provide domain-specific abstractions that

allow users to concisely express computations and compilers to aggressively op-

timize implementations. DSLs for hardware generation generally focus on gener-

ating domain-specific architectures such as streaming pipelines [52, 73, 74, 128]

or systolic arrays [44, 94]. By limiting both the input language and the gener-

atable micro-architectural features, DSLs for hardware generation can generate

high-performance accelerators while improving design productivity.

While powerful in theory, to fully take advantage of a DSL, implementors

must design optimizing compilers that generate designs competitive with hand-
2Verilog users experience similar problems when using behavioral synthesis tools which attempt

to automatically compile arbitrary Verilog to hardware.

14

written code. Such compilers are Herculean efforts requiring expertise across lan-

guage design, compiler optimization, and hardware design. Compiler infrastructure

like LLVM [96] centralize such expertise and allow implementors to rapidly design

a high-performance DSL. Such infrastructures must balance between flexibility—

which allows many languages to target them—and encoding target constraints—

which allows for optimization and efficient code generation.

Compiler infrastructures for hardware generation bridge the gap between com-

putational specifications and circuit implementations and must encode both types

of abstractions. The abstraction for modeling time shows up as a key design choice:

latency-insensitive interfaces [27] abstract away timing details from communica-

tion channels between modules but can impose high performance and validation

costs [111] while latency-sensitive interfaces expose timing details provide efficient

interfacing but can be difficult to maintain. Compiler infrastructures for hardware

design have proposed using latency-sensitive [103, 141], latency-insensitive [83], and

a combination of the two [33, 140, 163]. This choice of representation constrains

the types of optimizations the compiler can perform. A latency-insensitive design

prevents the compiler from reasoning about the timing behavior of modules, which

is essential for generating efficient interfaces. Conversely, a latency-sensitive design

requires the compiler to assume implicit synchronization across different parts of

the design by counting clock cycles, which can hinder the scalability of compiler

analyses.

Chapter 4 overviews the design of Calyx, an intermediate language (IL) and

a compiler infrastructure that intermixes software-like control flow with hardware-

like structure. Calyx’s group abstraction acts like basic blocks in software compilers

but instead encapsulates hardware circuits. Execution of groups is scheduled using

15

control operators like while loops and conditionals which allow the compiler to op-

timize the design’s control flow as well as hardware structure. Groups and control

together allow for precise specification of hardware and scalable analyses. Chapter 5

shows how Calyx can accommodate both latency-sensitive and latency-insensitive

reasoning within the same IL by observing that latency-sensitive execution sched-

ules are a refinement of latency-insensitive ones.

2.4 Summary

With the growing interest in accelerator design, numerous new programming mod-

els for hardware design are emerging at various levels of abstraction. Each ab-

straction offers distinct trade-offs: modern HDLs provide detailed control over

circuit specifications, while high-level programming models bridge computational

descriptions with hardware implementations. However, to be effective, each abstrac-

tion must address both the structural and temporal aspects of hardware design,

enabling robust reasoning and optimization. The remainder of this dissertation

explores the design of programming models at various levels of abstraction and

demonstrates how explicitly modeling timing behavior enables modular and effi-

cient hardware design.

16

CHAPTER 3

PREDICTABLE ACCELERATOR DESIGN WITH

TIME-SENSITIVE AFFINE TYPES

High-level synthesis (HLS) tools offer an alternative programming model for de-

signing and automatically generating hardware. Such tools are a particularly com-

pelling idea for programming reconfigurable hardware such as field programmable

gate array (FPGA). However, existing HLS tools repurpose legacy languages such

as C or C++ and use ad-hoc code annotations (called pragmas) to specify crucial

features of the resulting design such as the memory partitioning, pipelining, and

vectorized execution. While HLS tools enable users to rapidly generate a work-

ing hardware design, the absence of predictability means that users are unable to

quickly iterate and optimize their implementations. Seemingly small changes to

source-level programs cause dramatically different and unexpected results in the

final design. This unpredictability makes it challenging for the user to develop a

precise mental model to optimize against.

This chapter identifies the underlying problem: efficient design requires carefully

understanding and working with structural and temporal constraints of circuits;

however, HLS tools attempt to completely abstract away this information thereby

limiting the user’s ability to understand why a design behave poorly and how

to make it work better. The solution here is to use a novel substructural type

system to surface these constraints at the source-level enabling users to retain

the productivity of HLS tools while being able to precise reason about hardware

constraints.

The central insight is that we can extend an affine type system [151] to model

physical constraints of circuits. Components in a hardware design are finite and

17

expendable: a subcircuit or a memory can only do one thing at a time, so a pro-

gram needs to avoid conflicting uses. Previous research has shown how to apply

substructural type systems to model classic computational resources such as mem-

ory allocations and file handles [18, 70, 105, 151] and to enforce exclusion for

safe shared-memory parallelism [14, 39, 67]. Unlike those classic resources, how-

ever, the availability of hardware components changes with time. We extend affine

types with time sensitivity to express that repeated uses of the same hardware is

safe as long as they are temporally separated.

While all circuit components have reuse constraints, we focus solely on rea-

soning about physical memories. This is because HLS compilers have a lot more

leeway in handling more computational circuits; if a loop needs more multipliers,

the tool can just generate more multipliers. However, once the shape of the mem-

ory is specified by the user (through pragmas and other mechanisms), it must be

respected by the tool. Therefore, all other hardware reuse constraints are limited

by reasoning about memory.

This chapter embodies these ideas in Dahlia, a predictable high-level synthesis

language. Section 3.1 studies the predictability pitfalls with HLS tools. Section 3.2

describes the Dahlia language through examples. Section 3.3 develops the formal-

ism of time-sensitive affine types. Section 3.4 empirically demonstrates Dahlia’s

effectiveness in rejecting unpredictable designs and make area-performance trade-

offs in common accelerator designs.

3.1 Predictability Pitfalls in Traditional HLS

Figure 3.1 depicts the design of a traditional high-level synthesis (HLS) compiler.

A typical HLS tool adopts an existing open-source C/C++ frontend and adds

18

C/C++
Frontend with
#pragmas

Transformation
Heuristics

RTL Genera‐
tion Backend

Dahlia
Type Checking

Plain C/C++
Toolchain

#pragma In‐
sertion

Erasure

Verilog

Executable

Type Error

Transformation Failure

Traditional HLS Toolchain

This Paper

Figure 3.1: Overview of a traditional high-level synthesis toolchain and how Dahlia
layers type safety on top.

a set of transformation heuristics that attempt to map software constructs onto

hardware elements along with a backend that generates RTL code [24, 42]. The

transformation step typically relies on a constraint solver, such as an LP or SAT

solver, to satisfy resource, layout, and timing requirements [41, 71]. Programmers

can add #pragma hints to guide the transformation—for example, to duplicate loop

bodies or to share functional units.

HLS tools are best-effort compilers: they make a heuristic effort to translate

any valid C/C++ program to RTL, regardless of the consequences for the generated

accelerator architecture. Sometimes, the mapping constraints are unsatisfiable, so

the compiler selectively ignores some #pragma hints or issues an error. The gener-

ated accelerator’s efficiency depends on the interaction between the code, the hints,

and the transformation heuristics that use them.

The standard approach prioritizes automation over predictability. Small code

changes can yield large shifts in the generated architecture. When performance is

poor, the compiler provides little guidance about how to improve it. Pruning such

19

int m1[512][512], m2[512][512], prod[512][512];
int sum;
for (int i = 0; i < 512; i++) {

for (int j = 0; j < 512; j++) {
sum = 0;
for (int k = 0; k < 512; k++) {

sum += m1[i][k] * m2[k][j];
}
prod[i][j] = sum; } }

Figure 3.2: Dense matrix multiplication in HLS-friendly C.

m1

prod

*

Block RAMs

Combinational Logic

m2
+

sum
Register

(a) Original.

ꔇ* * **

prod +sum

m1 m2

(b) Unrolled.

ƒ ƒ

ꔇ* * **

m1[0]
m1[1]
m1[2]

m1[7]

prod

m2[0]
m2[1]
m2[2]

m2[7]

+sum

(c) Unrolled and Banked.

Figure 3.3: Three accelerator implementations for code in Figure 3.2.

unpredictable points from the design space would let programmers explore smaller,

smoother parameter spaces.

3.1.1 An Example in HLS

Programming with HLS centers on arrays and loops, which correspond to mem-

ory banks and logic blocks. Figure 3.2 shows the C code for a matrix multiplication

kernel. This section imagines the journey of a programmer attempting to use HLS

to generate a fast FPGA-based accelerator from this code. We use Xilinx’s SDAc-

cel [161] compiler (v2018.3.op) and target an UltraScale+ VU9P FGPA on an AWS

F1 instance [7] to perform the experiments in this section.

20

2 4 6 8 10

Unrolling factor (no partitioning)

2,300

2,400

2,500

2,600

2,700

L
U

T
s

us
ed

2 4 6 8 10

Unrolling factor (no partitioning)

750

800

850

900

950

1,000

R
un

ti
m

e
(m

s)

(a) Unrolling without parti-
tioning.

2 4 6 8 10 12 14 16
2,000

2,500

3,000

3,500

4,000

4,500

5,000

L
U

T
s

us
ed

Unpredictable points

Predictable points

Incorrect hardware

2 4 6 8 10 12 14 16

Unrolling factor (partitioning = 8)

100

200

300

400

500

600

700

800

R
un

ti
m

e
(m

s)

(b) Unrolling with 8-way
partitioning.

2 4 6 8 10 12 14 16

2,250

2,500

2,750

3,000

3,250

3,500

3,750

4,000

L
U

T
s

us
ed

2 4 6 8 10 12 14 16
Partitioning and Unrolling factor

100

200

300

400

500

600

700

800

R
un

ti
m

e
(m

s)

(c) Unrolling and banking in
lockstep.

Figure 3.4: Look-up table count (top) and execution latency (bottom) for the kernel
in Figure 3.2 with varying parameters.

Initial accelerator Our imaginary programmer might first try compiling the

code verbatim. The HLS tool maps the arrays m1, m2, and prod onto on-chip mem-

ories. FPGAs have SRAM arrays, called block RAMs (BRAMs), that the compiler

allocates for this purpose. The loop body becomes combinational logic consisting

of a multiplier, an adder, and an accumulator register. Figure 3.3a depicts this

configuration.

This design, while functional, does not harness any parallelism that an FPGA

can offer. The two key metrics for evaluating an accelerator design are performance

and area, i.e., the amount of physical chip resources that the accelerator occupies.

This initial configuration computes the matrix product in 841.1 ms and occupies

2,355 of the device’s lookup tables (LUTs). However, the target FPGA device has

over 1 million LUTs, so the programmer’s next job is to expend more of the FPGA

area to improve performance.

21

Loop unrolling The standard tool that HLS offers for expressing parallelism is

an UNROLL annotation, which duplicates the logic for a loop body. A programmer

might attempt to obtain a better accelerator design by adding this annotation to

the innermost loop on lines 6–8 in Figure 3.2:

#pragma HLS UNROLL FACTOR=8

This unrolling directive instructs the HLS tool to create 8 copies of the multiplier

and adder, called processing elements (PEs), and attempt to run them in parallel.

Loop unrolling represents an area–performance trade-off: programmers can reason-

ably expect greater unrolling factors to consume more of the FPGA chip but yield

lower-latency execution.

The UNROLL directive alone, however, fails to achieve this objective. Figure 3.4a

shows the effect of various unrolling factors on this code in area (LUT count)

and performance (latency). There is no clear trend: greater unrolling yields unpre-

dictably better and worse designs. The problem is that the accelerator’s memories

now bottleneck the parallelism provided by the PEs. The BRAMs in an FPGA

have a fixed, small number of ports, so they can only service one or two reads or

writes at a time. So while the HLS tool obeys the programmer’s UNROLL request to

duplicate PEs, its scheduling must serialize their execution. Figure 3.3b shows how

the HLS tool must insert additional multiplexing hardware to connect the mul-

tipliers to the single-ported memories. The additional hardware and the lack of

parallelism yields the unpredictable performance and area for different PE counts.

Memory banking to match parallelism To achieve expected speedups from

parallelism, accelerators need to use multiple memories. HLS tools provide anno-

tations to partition arrays, allocating multiple BRAMs and increasing the access

throughput. The programmer can insert these partitioning annotations to allocate

22

8 BRAMs per input memory:

#pragma HLS ARRAY_PARTITION VARIABLE=m1 FACTOR=8
#pragma HLS ARRAY_PARTITION VARIABLE=m2 FACTOR=8

Banking uses several physical memories, each of which stores a subset of the array’s

data. The compiler partitions the array using a “round-robin” policy to enable

parallel access. In this example, elements 0 and 8 go in bank 0, elements 1 and 9

go in bank 1, etc.:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(Each shade represents a different memory bank.) Figure 3.3c shows the resulting

architecture, which requires no multiplexing and allows memory parallel access.

Combining banking and unrolling, however, unearths another source of unpre-

dictable performance. While the HLS tool produces a good result when both the

banking factors and the loop unrolling factor are 8, other design choices perform

worse. Figure 3.4b shows the effect of varying the unrolling factor while keeping

the arrays partitioned with factor 8. Again, the area and performance varies unpre-

dictably with the unrolling factor. Reducing the unrolling factor from 9 to 8 can

counter-intuitively improve both performance and area. In our experiments, some

unrolling factors yield hardware that produces incorrect results. (We show the area

but omit the running time for these configurations.)

The problem is that some partitioning/unrolling combinations yield much sim-

pler hardware than others. When both the unrolling and the banking factors are

8, each parallel PE need only access a single bank, as in Figure 3.3c. The first PE

needs to access elements 0, 8, 16, and so on—and because the array elements are

“striped” across the banks, all of these values live in the first bank. With unrolling

23

factor 9, however, the first PE needs to access values from every bank, which

requires complicated memory indirection hardware. With unrolling factor 4, the

indirection cost is smaller—the first PE needs to access only bank 0 and bank 4.

From the programmer’s perspective, the HLS compiler silently enforces an un-

written rule: When the unrolling factor divides the banking factor, the area is good

and parallelism predictably improves performance. Otherwise, all bets are off. Fig-

ure 3.4b labels the points where the unrolling factor divides the banking factor as

predictable points. The HLS compiler emits no errors or warnings for any parameter

setting.

Banking vs. array size Even if we imagine that a programmer carefully ensures

that banking factors exactly match unrolling factors, another pitfall awaits them

when choosing the amount of parallelism. Figure 3.4c shows the effects of varying

the banking and unrolling factor in our kernel together. The LUT count again

varies wildly.

The problem is that, when the banking and unrolling factors do not evenly

divide the sizes of the arrays involved, the accelerator needs extra hardware to

cope with the “leftover” elements. The memory banks are unevenly sized, and the

PEs need extra hardware to selectively disable themselves on the final iteration to

avoid out-of-bounds memory accesses.

Again, there is a predictable subset of design points when the programmer

obeys the unwritten rule: An array’s banking factor should divide the array size.

Figure 3.4c highlights the predictable points that follow this rule. Among this

subset, the performance reliably improves with increasing parallelism and the area

cost scales proportionally.

24

3.1.2 Enforcing the Unwritten Rules

The underlying problem in each of these sources of unpredictability is that the

traditional HLS tool prioritizes automation over programmer control. While au-

tomation can seem convenient, mapping heuristics give rise to implicit rules that,

when violated, silently produce bad hardware instead of reporting a useful error.

We instead prioritizes the predictability of hardware generation and making

architectural decisions obvious in the source code. HLS tools already contain such

a predictable subset hidden within their unrestricted input language. By modeling

resource constraints, we can separate out this well-behaved fragment. Figure 3.1

shows how our checker augments a traditional HLS toolchain by lifting hidden

compiler reasoning into the source code and rejecting potentially unpredictable

programs.

The challenge, however, is that the “unwritten rules” of HLS are never explic-

itly encoded anywhere—they arise implicitly from non-local interactions between

program structure, hints, and heuristics. A naïve syntactic enforcement strategy

would be too conservative—it would struggle to allow flexible, fine-grained sharing

of hardware resources.

We design a type system that models the constraints of hardware implemen-

tation to enforce these constraints in a composable, formal way. Our type system

addresses target-independent issues—it prevents problems that would occur even

on an arbitrarily large FPGA. We do not attempt to rule out resource exhaustion

problems because they would tie programs to specific target devices. We see that

kind of quantitative resource reasoning as important future work.

25

3.2 The Dahlia Language

Dahlia’s type system enforces a safety property: that the number of simultaneous

reads and writes to a given memory bank may not exceed the number of ports.

While traditional HLS tools enforce this requirement with scheduling heuristics,

Dahlia enforces it at the source level using types.

The key ideas in Dahlia are (1) using substructural typing to reason about

consumable hardware resources and (2) expressing time ordering in the language

to reason about when resources are available. This section describes these two core

features (§§ 3.2.1 and 3.2.2) and then shows how Dahlia builds on them to yield a

language that is flexible enough to express real programs (§§ 3.2.3–3.2.6).

3.2.1 Affine Memory Types

The foundation of Dahlia’s type system is its reasoning about memories. The prob-

lem in Section 3.1.1’s example is conflicting simultaneous accesses to the design’s

memories. The number of reads and writes supported by a memory per cycle is

limited by the number of ports in the memory. HLS tools automatically detect

potential read/write conflicts and schedule accesses across clock cycles to avoid

errors. Dahlia instead makes this reasoning about conflicts explicit by enforcing an

affine restriction on memories.

Memories are defined by giving their type and size:

let A: float[10];

The type of A is mem float[10], denoting a single-ported memory that holds 10

floating-point values. Each Dahlia memory corresponds to an on-chip BRAM in

26

the FPGA. Memories resemble C or Java arrays: programs read and mutate the

contents via subscripting, as in A[5] := 4.2. Because they represent static physical

resources in the generated hardware, memory types differ from plain value types

like float by preventing duplication and aliasing:

let x = A[0]; // OK: x is a float.
let B = A; // Error: cannot copy memories.

The affine restriction on memories disallows reads and writes to a memory that

might occur at the same time:

let x = A[0]; // OK
A[1] := 1; // Error: Previous read consumed A.

While type-checking A, the Dahlia compiler removes A from the typing context.

Subsequent uses of A are errors, with one exception: identical reads to the same

memory location are allowed. This program is valid, for example:

let x = A[0];
let y = A[0]; // OK: Reading the same address.

The type system uses access capabilities to check reads and writes [57, 68]. A read

expression such as A[0] acquires a non-affine read capability for index 0 in the

current scope, which permits unlimited reads to the same location but prevents

the acquisition of other capabilities for A. The generated hardware reads once from

A and distributes the result to both variables x and y, as in this equivalent code:

let tmp = A[0]; let x = tmp; let y = tmp;

However, memory writes use affine write capabilities, which are use-once resources:

multiple simultaneous writes to the same memory location remain illegal.

27

3.2.2 Ordered and Unordered Composition

A key HLS optimization is parallelizing execution of independent code. This op-

timization lets HLS compilers parallelize and reorder dependency-free statements

connected by ; when the hardware constraints allow it—critically, when they do

not need to access the same memory banks.

Dahlia makes these parallelism opportunities explicit by distinguishing between

ordered and unordered composition. The C-style ; connector is unordered: the com-

piler is free to reorder and parallelize the statements on either side while respecting

their data dependencies. A second connector, ---, is ordered: in A --- B, statement

A must execute before B.

Dahlia prevents resource conflicts in unordered composition but allows two

statements in ordered composition to use the same resources. For example, Dahlia

accepts this program that would be illegal when joined by the ; connector:

let x = A[0]

A[1] := 1

In the type checker, ordered composition restores the affine resources that were

consumed in the first command before checking the second command. The capabil-

ities for all memories are discarded, and the program can acquire fresh capabilities

to read and write any memory.

Together, ordered and unordered composition can express complex concurrent

designs:

let A: float[10]; let B: float[10];
{

let x = A[0] + 1

B[1] := A[1] + x // OK

28

};
let y = B[0]; // Error: B already consumed.

The statements composed with --- are ordered with each other but unordered

with the last line. The read therefore must not conflict with either of the first two

statements.

Logical time From the programmer’s perspective, a chain of ordered compu-

tations executes over a series of logical time steps. Logical time in Dahlia does

not directly reflect physical time (i.e., clock cycles). Instead, the HLS backend is

responsible for allocating cycles to logical time steps in a way that preserves the

ordering of memory accesses. For example, a long logical time step containing an

integer division might require multiple clock cycles to complete, and the compiler

may optimize away unneeded time steps that do not separate memory accesses. Re-

gardless of optimizations, however, a well-typed Dahlia program requires at least

enough ordered composition to ensure that memory accesses do not conflict.

Local variables as wires & registers Local variables, defined using the let

construct, do not share the affine restrictions of memories. Programs can freely

read and write to local variables without restriction, and unordered composition

respects the dependencies induced by local variables:

let x = 0; x := x + 1; let y = x; // All OK

In hardware, local variables manifest as wires or registers. The choice depends on

the allocation of physical clock cycles: values that persist across clock cycles require

registers. Consider this example consisting of two logical time steps:

let x = A[0] + 1 --- B[0] := A[1] + x

The compiler must implement the two logical time steps in different clock cycles,

29

so it must use a register to hold the value of x. In the absence of optimizations,

registers appear whenever a variable’s live range crosses a logical time step bound-

ary. Therefore, programmers can minimize the use of registers by reducing the live

ranges of variables or by reducing the amount of sequential composition.

3.2.3 Memory Banking

As Section 3.1.1 details, HLS tools can bank memories into disjoint components to

allow parallel access. Dahlia memory declarations support bank annotations:

let A: float[8 bank 4];

In a memory type mem t[n bank m], the banking factor m must evenly divide the

size n to yield equally-sized banks. HLS tools, in contrast, allow uneven banking

and silently insert additional hardware to account for it (see Section 3.1.1).

Affine restrictions for banks Dahlia tracks an affine resource for each memory

bank. To physically address a bank, the syntax M{b}[i] denotes the ith element

of M ’s bth bank. This program is legal, for example:

let A: float[10 bank 2];
A{0}[0] := 1;
A{1}[0] := 2; // OK: Accessing a different bank.

Dahlia also supports logical indexing into banked arrays using the syntax M[n]

for literals n. For example, A[1] is equivalent to A{1}[0] above. Because the index

is static, the type checker can automatically deduce the bank and offset.

Multi-ported memories Dahlia also supports reasoning about multi-ported

memories. This syntax declares a memory where each bank has two read/write

30

ports:

let A: float{2}[10];

A memory provides k affine resources per bank where k is the number of ports

in a memory. This rule lets multi-ported memories provide multiple read/write

capabilities in each logical time step. For example, Dahlia accepts this program:

let A: float{2}[10];
let x = A[0];
A[1] := x + 1;

Dahlia does not guarantee data-race freedom in the presence of multi-ported mem-

ories. Programs are free to write to and read from the same memory location in the

same logical time step and should expect the semantics of the underlying memory

technology. Extensions to rule out data races would resemble race detection for

parallel software [112, 127].

Multi-dimensional banking Banking generalizes to multi-dimensional arrays.

Every dimension can have an independent banking factor. This two-dimensional

memory has two banks in each dimension, a total of 2× 2 = 4 banks:

let M: float[4 bank 2][4 bank 2];

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

The physical and logical memory access syntax similarly generalizes to multiple

dimensions. For example, M{3}[0] represents the element logically located at M

[1][1].

31

3.2.4 Loops and Unrolling

Fine-grained parallelism is an essential optimization in hardware accelerator design.

Accelerator designers duplicate a block of logic to trade off area for performance: n

copies of the same logic consume n times as much area while offering a theoretical

n-way speedup. Dahlia syntactically separates parallelizable doall for loops, which

must not have any cross-iteration dependencies, from sequential while loops, which

may have dependencies but are not parallelizable. Programmers can mark for loops

with an unroll factor to duplicate the loop body logic and run it in parallel:

for (let i = 0..10) unroll 2 { f(i) }

This loop is equivalent to a sequential one that iterates half as many times and

composes two copies of the body in parallel:

for (let i = 0..5) { f(2*i + 0); f(2*i + 1) }

The doall restriction is important because it allows the compiler to run the two

copies of the loop body in parallel using unordered composition. In traditional

HLS tools, a loop unrolling annotation such as #pragma HLS unroll is always

allowed—even when the loop body makes parallelization difficult or impossible.

The toolchain will replicate the loop body and rely on complex analysis and re-

source scheduling to optimize the unrolled loop body as well as it can.

Resource conflicts in unrolled loops are errors. For example, this loop accesses

an unbanked array in parallel:

let A: float[10];
for (let i = 0..10) unroll 2 {

A[i] := compute(i) // Error: Insufficient banks.
}

32

Unrolled memory accesses Dahlia uses special index types for loop iterators to

type-check memory accesses within unrolled loops. Index types generalize integers

to encode information about loop unrolling. In this example:

for (let i = 0..8) unroll 4 { A[i] }

The iterator i gets the type idx{0..4}, indicating that accessing an array at i will

consume banks 0, 1, 2, and 3. Type-checking a memory access with i consumes all

banks indicated by its index type.

Unrolling and ordered composition Loop unrolling has a subtle interaction

with ordered composition. In a loop body containing ---, like this:

let A: float[10 bank 2];
for (let i = 0..10) unroll 2 {

let x = A[i]

f(x, A[0]) }

A naive interpretation would use parallel composition to join the loop bodies at

the top level:

for (let i = 0..5) {
{ let x0 = A[2*i] --- f(x0, A[0]) };
{ let x1 = A[2*i + 1] --- f(x1, A[0]) } }

However, this interpretation is too restrictive. It requires all time steps in each

loop body to avoid conflicts with all other time steps. This example would be

illegal because the access to A[i] in the first time step may conflict with the access

to A[0] in the second time step. Instead, Dahlia reasons about unrolled loops in

lockstep by parallelizing within each logical time step. The loop above is equivalent

to:

for (let i = 0..5) {
{ let x0 = A[2*i]; let x1 = A[2*i + 1] }

{ f(x0, A[0]); f(x1, A[0]) } }

33

The lockstep semantics permits this unrolling because conflicts need only be avoided

between unrolled copies of the same logical time step. HLS tools must enforce a

similar restriction but leave the choice to black-box heuristics.

Nested unrolling In nested loops, unrolled iterators can separately access di-

mensions of a multi-dimensional array. Nested loops also interact with Dahlia’s

read and write capabilities. In this program:

let A: float[8 bank 4][10 bank 5];
for (let i = 0..8) {

for (let j = 0..10) unroll 5 {
let x = A[i][0]

A[i][0] := j; // Error: Insufficient write

} } // capabilities.

The read to array A[i][0] can be proved to be safe because after desugaring, the

reads turn into:

let x0 = A[i][0]; let x1 = A[i][0] ...

The access is safe because the first access acquires a read capability for indices i

and 0, so the subsequent copies are safe. Architecturally, the code entails a single

read fanned out to each parallel PE. However, the write desugars to:

A[i][0] := j; A[i][0] := j + 1 ...

which causes a write conflict in the hardware.

3.2.5 Combine Blocks for Reduction

In traditional HLS, loops can freely include dependent operations, as in this dot

product:

for (let i = 0..10) unroll 2 { dot += A[i] * B[i] }

34

However, the += update silently introduces a dependency between every iteration

which is disallowed by Dahlia’s doall for-loops. HLS tools heuristically analyze

loops to extract and serialize dependent portions. In Dahlia, programmers explicitly

distinguish the non-parallelizable reduction components of for loops. Each for can

have an optional combine block that contains sequential code to run after each

unrolled iteration group of the main loop body. For example, this loop is legal:

for (let i = 0..10)
unroll 2 {

let v = A[i] * B[i];
} combine {

dot += v;
}

PE 0

combine

A{0} B{0} A{1} B{1}

* PE 1 *

dot+

There are two copies of the loop body that run in parallel and feed into a single

reduction tree for the combine block.

The type checker gives special treatment to variables like v that are defined

in for bodies and used in combine blocks. In the context of the combine block, v

is a combine register, which is a tuple containing all values produced for v in the

unrolled loop bodies. Dahlia defines a class of functions called reducers that take

a combine register and return a single value (similar to a functional fold). Dahlia

defines +=, -=, *=, /= as built-in reducers with infix syntax.

3.2.6 Memory Views for Flexible Iteration

In order to predictably generate hardware for parallel accesses, Dahlia statically

calculates banks accessed by each PE and guarantees that they are distinct. Fig-

ure 3.5a shows the kind of hardware generated by this restriction—each PE is

directly connected to a bank.

35

PE
0

PE
1

PE
2

PE
3

Bank
0

Bank
1

Bank
2

Bank
3

(a) Banked

PE
0

PE
1

Bank
0

Bank
1

Bank
2

Bank
3

(b) Shrink

PE
0

PE
1

PE
2

PE
3

Bank
0

Bank
1

Bank
2

Bank
3

+

+

+

+

(c) Suffix

PE
0

PE
1

PE
2

PE
3

Bank
0

Bank
1

Bank
2

Bank
3

+

+

+

+

(d) Shift

PE
0, 0

PE
0, 1

PE
1, 0

PE
1, 1

Bank
0

Bank
1

Bank
2

Bank
3

+

+

+

+

(e) Split

Figure 3.5: Hardware schematics for each kind of memory view. Highlighted out-
lines indicate added hardware cost.

To enforce this hardware generation, Dahlia only allows simple indexing ex-

pressions like A[i] and A[4] and rejects arbitrary index calculations like A[2*i].

General indexing expressions can require complex indirection hardware to allow

any PE to access any memory bank. An access like A[i*i], for example, makes it

difficult to deduce which bank it would read on which iteration. For simple expres-

sions like A[j+8], however, the bank stride pattern is clear. Traditional HLS tools

make a best-effort attempt to deduce access patterns, but subtle changes in the

code can unpredictable prevent the analysis and generate bad hardware.

Dahlia uses memory views to define access patterns that HLS compilers can

compile efficiently and to convince the Dahlia type checker that a parallel access

will be predictable. The key idea is to offer different logical arrangements of the

same underlying physical memory. By logically re-organizing the memory, views

can simply reuse Dahlia’s type-checking to ensure that complex access patterns

are predictable. Furthermore, this allows views to capture the hardware cost of

an access pattern in the source code instead of relying on black-box analysis in

HLS tools. For Dahlia’s HLS C++ backend, views are compiled to direct memory

accesses.

The rest of this section describes Dahlia’s memory views and their cost in terms

of hardware required to transform bank and index values to support the iteration

36

pattern.

Shrink To directly connect PEs to memory banks, Dahlia requires the unrolling

factor to match the banking factor. To allow lower unrolling factors, Dahlia pro-

vides shrink views, which reduce the banking factors of an underlying memory by

an integer factor. For example:

let A: float[8 bank 4];
view sh = shrink A[by 2]; // sh: float[8 bank 2]
for (let i = 0..8) unroll 2

sh[i]; // OK: sh has 2 banks. Compiled to: A[i].

The example first defines a view sh with the underlying memory A and divides

its banking factor by 2. Dahlia allows sh[i] here because each PE will access a

distinct set of banks. The first PE accesses banks 0 and 2; the second accesses banks

1 and 3. The hardware cost of a shrink view, as Figure 3.5b illustrates, consists of

multiplexing to select the right bank on every iteration. The access sh[i] compiles

to A[i].

Suffix A second kind of view lets programs create small slices of a larger memory.

Dahlia distinguishes between suffixes that it can implement efficiently and costlier

ones. An efficient aligned suffix view uses this syntax:

view v = suffix M[by k * e];

where view v starts at element k × e of the memory M. Critically, k must be the

banking factor of M. This restriction allows Dahlia to prove that each logical bank

in the view maps to the same physical bank while the indices are offset by the

indexing expression. The hardware cost of a suffix view is the address adapter for

each bank. A view access v{b}[i] is compiled to M{b}[e+ i].

For example, generating suffixes in a loop results in this pattern, where the dig-

37

its in each cell are the indices, the shades represent the banks, and the highlighted

outline indicates the view:

let A: float[8 bank 2];
for (let i = 0..4) {

view s = suffix A[by 2*i];
s[1]; // reads A[2*i + 1]

}

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

A suffix view defined using view v = suffix M[by k*e] and accessed using v[i] is

compiled to M[k*e + i].

Shift Shifted suffixes are like standard suffixes but allow unrestricted offset ex-

pressions:

view v = shift M[by e];

Since e is unrestricted, Dahlia assumes that both the bank and the indices need to

be adapted and that each PE accesses every bank. Figure 3.5d shows the hardware

cost of a shift view: each PE is connected to every bank and the index expression

is transformed using an address adapter. The distinction between suffix and shift

views allows Dahlia to capture the cost of different accessing schemes.

Even in this worst-case scenario, Dahlia can reason about the disjointness of

bank accesses. This loop is legal:

let A: float[12 bank 4];
for (let i = 0..3) {

view r = shift A[by i*i]; // r: float[12 bank 4]
for (let j = 0..4) unroll 4

let x = r[j]; // accesses A[i*i + j]
}

The view r has a memory type, so Dahlia can guarantee that the inner access r[j]

uses disjoint banks and is therefore safe to parallelize. An access r[i] to a view

declared with shift M[by e] compiles to M[e+ i].

38

Split Some nested iteration patterns can be parallelized at two levels: globally,

over an entire array, and locally, over a smaller window. This pattern arises in

blocked computations, such as this dot product loop in C++:

float A[12], B[12], sum = 0.0;
for (int i = 0; i < 6; i++)

for (int j = 0; j < 2; j++)
sum += A[2*i + j] * B[2*i + j];

Both the inner loop and the outer loop represent opportunities for parallelization.

However, Dahlia cannot prove this parallelization to be safe:

let A, B: float[12 bank 4];
view shA, shB = shrink A[by 2], B[by 2];
for (let i = 0..6) unroll 2 {

view vA, vB = suffix shA[by 2*i], shB[by 2*i];
for (let j = 0..2) unroll 2 {

let v = vA[j] + vB[j];
} combine {

sum += v; }}

While Dahlia can prove that the inner accesses into the views can be predictably

parallelized, it cannot establish the disjointness of the parallel copies of the views

va and vb created by the outer unrolled loop.

Split views allow for this reasoning. The key idea is to create logically more di-

mensions than the physical memory and reusing Dahlia’s reasoning for multidimen-

sional memories to prove safety for such parallel accesses. A split view transforms

a one-dimensional memory (left) into a two-dimensional memory (right):

0 1 2 3 4 5 6 7 8 9 10 11
1 5 6 8 90
3 6 7 10 112

Using these split-view declarations:

view split_A = split A[by 2];
view split_B = split B[by 2];

39

x ∈ variables a ∈ memories n ∈ numbers
b ::= true | false v ::= n | b
e ::= v | bop e1 e2 | x | a[e]
c ::= e | let x = e | c1 c2 | c1 ; c2 | if x c1 c2 |

while x c | x := e | a[e1] := e2 | skip
τ ::= bit〈n〉 | float | bool | mem τ [n1]

Figure 3.6: Abstract syntax for the DCore core language.

Each view has type mem float[2 bank 2][6 bank 2]. A row in the logical view

represents a “window” for computation. The above example can now unroll both

loops, by changing the inner access to:

let v = split_A[j][i] * split_B[j][i];

As Figure 3.5e illustrates, split views have similar cost to aligned suffix views: they

require no bank indirection hardware because the bank index is always known

statically. They require an address adapter to compute the address within the

bank from the separate coordinates. A split view declared view sp = split M[by

k] on a memory M with k banks translates the access sp[i][j] to M{bank}[idx]

where:

bank = i ∗ k + (j mod b) idx =

⌊
j

b

⌋

3.3 Formalism

This section provides an overview of the time-sensitive affine type system that

underlies Dahlia’s in a core language, DCore. We give both a large-step semantics,

which is more intelligible, and a small-step semantics, which enables a soundness

proof. Appendix A provides the complete operational semantics for DCore and

provides the proof of soundness.

40

3.3.1 Syntax

Figure 3.6 lists the grammar for DCore. DCore statements c resemble a typical

imperative language: there are expressions, variable declarations, conditions, and

simple sequential iteration via while. DCore has ordered composition c1 c2 and

unordered composition c1 ; c2. It separates memories a and variables x into separate

syntactic categories. DCore programs can only declare the latter: a program runs

with a fixed set of available memories.

3.3.2 Large-Step Semantics

DCore’s large-step operational semantics is a checked semantics that enforces

Dahlia’s safety condition by explicitly tracking and getting stuck when it would

otherwise require two conflicting accesses. Our type system (Section 3.3.3) aims to

rule out these conflicts.

The semantics uses an environment σ mapping variable and memory names to

values, which may be primitive values or memories, which in turn map indices to

primitive values. A second context, ρ, is the set of the memories that the program

has accessed. ρ starts empty and accumulates memories as the program reads and

writes them.

The operational semantics consists of an expression judgment σ1, ρ1, e ⇓ σ2, ρ2, v

and a command judgment σ1, ρ1, c ⇓ σ2, ρ2. We describe some relevant rules here,

but elide the complete semantics and proof to Appendix A.

41

Memory accesses Memories in DCore are mutable stores of values. Banked

memories in Dahlia can be built up using these simpler memories. The rule for a

memory read expression a[n] requires that a not already be present in ρ, which

would indicate that the memory was previously consumed:

a 6∈ ρ1 σ1, ρ1, e ⇓ σ2, ρ2,n σ2(a)(n) = v

σ1, ρ1, a[e] ⇓ σ2, ρ2 ∪ {a}, v

Composition Unordered composition accumulates the resource demands of two

commands by threading ρ through:

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ2, c2 ⇓ σ3, ρ3

σ1, ρ1, c1 ; c2 ⇓ σ3, ρ3

If both commands read or write the same memory, they will conflict in ρ. Ordered

composition runs each command in the same initial ρ environment and merges the

resulting ρ:

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ1, c2 ⇓ σ3, ρ3

σ1, ρ1, c1 c2 ⇓ σ3, ρ2 ∪ ρ3

3.3.3 Type System

The typing judgments have the form Γ1,∆1 ` c a Γ2,∆2 and Γ,∆1 ` e : τ a ∆2. Γ

is a standard typing context for variables and ∆ is the affine context for memories.

42

Affine memory accesses Memories are affine resources. The rules for reads and

writes check the type of the index in Γ and remove the memory from ∆:

Γ,∆1 ` e1 : bit〈n〉 a ∆2 ∆2 = ∆3 ∪ {a 7→ mem τ [n1]}

Γ,∆1 ` a[e] : τ a ∆3

Composition The unordered composition rule checks the first statement in the

initial contexts and uses the resulting contexts to check the second statement:

Γ1,∆1 ` c1 a Γ2,∆2 Γ2,∆2 ` c2 a Γ3,∆3

Γ1,∆1 ` c1 ; c2 a Γ3,∆3

Ordered composition checks both commands under the same resource set, ∆1, but

threads the non-affine context through:

Γ1,∆1 ` c1 a Γ2,∆2 Γ2,∆1 ` c2 a Γ3,∆3

Γ1,∆1 ` c1 c2 a Γ3,∆2 ∩∆3

The rule merges the resulting ∆ contexts with set intersection to yield the resources

not consumed by either statement.

3.3.4 Small-Step Semantics

We also define a small-step operational semantics for DCore upon which we build

a proof of soundness. The semantics consists of judgments σ1, ρ1, e → σ2, ρ2, e′ and

σ1, ρ1, c → σ2, ρ2, c′ where σ and ρ are the environment and the memory context

respectively. The main challenge is sequential composition, which uses an interme-

diate command form c1
ρ∼ c2 to thread ρ to c1 and c2. Appendix A provides the

full rules for the small-step semantics.

43

3.3.5 Desugaring Surface Constructs

DCore desugars surface language features present in Dahlia.

Memory banking A banked memory declaration like this:

let A: float[m bank n];

desugars into several unbanked memories:

let A_0: float[m
n]; let A_1: float[m

n]; ...

Desugaring transforms reads and writes of banked memories to conditional state-

ments that use the indexing expression to decide which bank to access.

Loop unrolling Desugaring of for loops uses the technique described in Sec-

tion 3.2.4, translating from:

for (let i = 0 .. m) unroll k { c1 --- c2 ... }

into a while loop that duplicates the body:

let i = 0;
while (i < m

k) {
{ c1[i 7→ k*i+0]; c1[i 7→ k*i+1] ... }

{ c2[i 7→ k*i+0]; c2[i 7→ k*i+1] ... }
...
i++; }

where c[x 7→ e] denotes substitution.

Memory views For views’ operational semantics, a desugaring based on the

mathematical descriptions in §3.2.6 suffices. To type-check them, however, would

require tracking the underlying memory for each view (transitively, to cope with

44

views of views) and type-level reasoning about the bank requirements of an access

pattern. Formal treatment of these types would require an extension to DCore.

Multi-ported memories Reasoning about memory ports requires quantitative

resource tracking, as in bounded linear logic [63]. We leave such an extension of

DCore’s affine type system as future work.

3.3.6 Soundness Theorem

We state a soundness theorem for DCore’s type system with respect to its checked

small-step operational semantics.

Theorem 3.3.1. If ∅,∆∗ ` c a Γ2,∆2 and ∅, ∅, c ∗→ σ, ρ, c′ and σ, ρ, c′ 6→, then

c′ = skip.

where ∆∗ is the initial affine context of memories available to a program. The

theorem states that a well-typed program never gets stuck due to memory conflicts

in ρ. We prove this theorem using progress and preservation lemmas:

Lemma 3.3.2 (Progress). If Γ,∆ ` c a Γ2,∆2 and Γ,∆ ∼ σ, ρ, then σ, ρ, c →

σ′, ρ′, c′ or c = skip.

Lemma 3.3.3 (Preservation). If Γ,∆ ` c a Γ2,∆2 and Γ,∆ ∼ σ, ρ, and σ, ρ, c →

σ′, ρ′, c′, then Γ′,∆′ ` c′ a Γ′
2,∆

′
2 and Γ′,∆′ ∼ σ′, ρ′.

In these lemmas, Γ,∆ ∼ σ, ρ is a well-formedness judgment stating that all vari-

ables in Γ are in σ and all memories in ∆ are not in ρ. Using an extension of the

syntax in Figure 3.6, we prove the lemmas by induction on the small-step relation

(Appendix A).

45

3.4 Evaluation

Our evaluation measures whether Dahlia’s restrictions can improve predictability

without sacrificing too much sheer performance. We conduct two experiments: (1)

We perform an exhaustive design space exploration for one kernel to determine how

well the restricted design points compare to the much larger unrestricted parameter

space. (2) We port the MachSuite benchmarks [132] and, where Dahlia yields a

meaningful design space, perform a parameter sweep.

3.4.1 Implementation and Experimental Setup

We implemented a Dahlia compiler in 5200 LoC of Scala. The compiler checks

Dahlia programs and generates C++ code using AMD’s Vitis HLS’s #pragma di-

rectives [162]. We execute benchmarks on AWS F1 instances [7] with 8 vCPUs,

122 GB of main memory, and an AMD UltraScale+ VU9P. We use the SDAccel

development environment [161] and synthesize the benchmarks with a target clock

period of 250 MHz.

3.4.2 Case Study: Unrestricted DSE vs. Dahlia

In this section, we conduct an exhaustive design-space exploration (DSE) of a single

benchmark as a case study. Without Dahlia, the HLS design space is extremely

large—we study how the smaller Dahlia-restricted design space compares. We select

a blocked matrix multiplication kernel (gemm-blocked from MachSuite) for its large

but tractable design space. The kernel has 3 two-dimensional arrays (two operands

and the output product) and 5 nested loops, of which the inner 3 are parallelizable.

46

(a) Pareto-optimal points. (b) Points accepted by Dahlia.

(c) Cluster of Pareto points.

Figure 3.7: Results from exhaustive design space exploration for gemm-blocked.

We define parameters for the 6 banking factors (two dimensions for each memory)

and 3 unrolling factors. We explore a design space with banking factors of 1–4 and

unrolling factors of 1, 2, 4, 6, and 8. This design space consists of 32,000 distinct

configurations.

We exhaustively evaluated the entire design space using Vitis HLS’s estimation

mode, which required a total of 2, 700 compute hours. We identify Pareto-optimal

configurations according to their estimated cycle latency and number of look-up ta-

bles (LUTs), flip flops (FFs), block RAMs (BRAMs), and arithmetic units (DSPs).

Dahlia accepts 354 configurations, or about 1.1% of the unrestricted design

space. But the smaller space is only valuable if it consists of useful design points—

47

a broad range of Pareto-optimal configurations. Figures 3.7a and 3.7b show the

Pareto-optimal points and the subset of points that Dahlia accepts, respectively.

(Pareto optimality is determined using all objectives, but the plot shows only two:

LUTs and latency.) Figure 3.7c shows a zoomed-in view of the tight cluster of

Pareto points in the bottom-left of the first two graphs. Dahlia-accepted points

lie primarily on the Pareto frontier and allow area-latency trade-offs. The opti-

mal points that Dahlia rejects expend a large number of LUTs to reduce BRAM

consumption which, while Pareto optimal, don’t seem to be of practical use.

3.4.3 Dahlia-Directed DSE & Programmability

We port benchmarks from an HLS benchmark suite, MachSuite [132], to study

Dahlia’s flexibility. Of the 19 MachSuite benchmarks, one (backprop) contains a

correctness bug and two fail to synthesize correctly in Vivado, indicating a bug

in the tools. We successfully ported all 16 of the remaining benchmarks without

substantial restructuring.

From these, we select 3 benchmarks that exhibit the kind of fine-grained, loop-

level parallelism that Dahlia targets as case studies: sencil2d, md-knn, and md-grid.

As the previous section illustrates, an unrestricted DSE is intractable for even

modestly sized benchmarks, so we instead measure the breadth and performance of

the much smaller space of configurations that Dahlia accepts. For each benchmark,

we find all optimization parameters available in the Dahlia port and define a search

space. The type checker rejects some design points, and we measure the remaining

space. We use Vitis HLS’s estimation mode to measure the resource counts and

estimated latency for each accepted point. Figure 3.8 depicts the Pareto-optimal

points in each space. In each plot, we also highlight the effect a single parameter

48

50k 100k 150k 200k 250k 300k
Latency (cycles)

2k

3k

4k

5k

6k

LU
Ts

 u
se

d

1
3

Inner unroll

(a) stencil2d with inner unroll.

16k 17k 18k
Latency (cycles)

0k

100k

200k

300k

400k

500k

128.6k 128.7k 128.8k
Latency (cycles)

8k

9k

10k

11k

12k

1
2
4
8

Outer unroll

(b) md-knn with outer unroll.

7,950 8,000 8,050
Latency (cycles)

10k

15k

20k

25k

30k

35k

40k

45k

50k

1
2

Middle unroll

(c) md-grid with middle unroll.

Figure 3.8: The design spaces for three MachSuite benchmarks. Each uses a color
to highlight one design parameter.

has on the results.

The rest of this section reports quantitatively on each benchmark’s design space

and reports qualitatively on the programming experience during the port from C

to Dahlia.

stencil2d MachSuite’s stencil2d is a filter operation with four nested loops. The

outer loops scan over the input matrix and the inner loops apply a 3 × 3 filter.

Our Dahlia port unrolls the inner two loops and banks both input memories. We

use unrolling factors from 1 to 3 and bank each dimension of the input array by

factors 1 to 6. The resulting design space has 2,916 points. Dahlia accepts 18 of

49

these points (0.6%), of which 8 are Pareto-optimal within the set.

Figure 3.8a shows the Pareto frontier among the Dahlia-accepted points. The

figure uses color to show the unrolling factor for the innermost loop. This unrolling

factor has a large effect on the design’s performance, while banking factors and

the other loop explain the rest of the variation.

The original C code uses single-dimensional arrays and uses index arithmetic

to treat them as matrices:

for (r=0; r<row_size-2; r++)
for (c=0; c<col_size-2; c++)

for (k1=0; k1<3; k1++)
for (k2=0; k2<3; k2++)

mul = filter[k1*3 + k2] *
orig[(r+k1)*col_size + c+k2];

In the Dahlia port, we must use proper two-dimensional arrays because the com-

piler rejects arbitrary indexing expressions. Using views, programmers can decou-

ple the storage format from the iteration pattern. To express the accesses to the

input matrix orig, we create a shifted suffix view (Section 3.2.6) for the current

window:

for (let row = 0..126) {
for (let col = 0..62) {

view window = shift orig[by row][by col];
for (let k1 = 0..3) unroll 3 {

for (let k2 = 0..3) unroll 3 {
let mul = filter[k1][k2] * window[k1][k2];

The view makes the code’s logic more obvious while allowing the Dahlia type

checker to allow unrolling on the inner two loops. It also clarifies why parallelizing

the outer loops would be undesirable: the parallel views would require overlapping

regions of the input array, introducing a bank conflict.

50

md-knn The md-knn benchmark implements an n-body molecular dynamics sim-

ulation with a k-nearest neighbors kernel. The MachSuite implementation uses

data-dependent loads in its main loop, which naïvely seems to prevent paralleliza-

tion. In our Dahlia port, however, we hoist this serial section into a separate loop

that runs before the main, parallelizable computation. Dahlia’s type system helped

guide the programmer toward a version of the benchmark where the benefits from

parallelization are clear.

For each of the program’s four memories, we used banking factors from 1 to 4.

We unrolled each of the two nested loops with factors from 1 to 8. The full space

has 16,384 points, of which Dahlia accepts 525 (3%). 37 of the Dahlia-accepted

points are Pareto-optimal.

Figure 3.8b shows two Pareto frontiers that Dahlia accepts at different scales.

The color shows the unrolling factor of the outer loop. The frontier on the right

uses an order of magnitude fewer resources but is an order of magnitude slower. In

this kernel, the dominant effect is the memory banking (not shown in the figure),

which determines which frontier the designs fall into. The outer unrolling factor

(shown in color) affects the two regimes differently: on the right, it allows area–

latency trade-offs within the frontier; on the left, it acts as a second-order effect

that expends LUTs to achieve a small increase in performance.

md-grid Another algorithm for the same molecular dynamics problem, md-grid,

uses a different strategy based on a 3D grid implemented with several 4-dimensional

arrays. It calculates forces between neighboring grid cells. Of its 6 nested loops, the

outer three are parallelizable. We use banking factors of 1 to 4 for each dimension

of each array, and we try unrolling factors from 1 to 8 for both loops. The full space

51

has 21,952 points, of which Dahlia accepts 81 (0.4%). 13 of the Dahlia-accepted

points are Pareto-optimal.

Figure 3.8c again shows the Pareto-optimal design points. The innermost loop

unrolling factor (not shown in the figure) determines which of three coarse regimes

the design falls into. The color shows the second loop unrolling factor, which deter-

mines a second-order area–latency trade-off within each regime. Unrolling enables

latency-area trade-offs in both the cases.

3.5 Discussion

High-level synthesis (HLS) tools offer a new programming model for hardware de-

sign but fail to provide predictable performance trade-offs. By explicitly modeling

timing constraints of memories, Dahlia demonstrates how HLS tools can provide

predictable resource-performance trade-offs. When users are likely to make un-

predictable trade-offs, Dahlia’s type system provides an explanation for why the

trade-off will be unpredictable. This is a different approach from the large number

of design space exploration (DSE) tools [85, 125, 143] which attempt to completely

automate the process of optimizing designs; when such tools produce an efficient

or inefficient design point, it is not possible for the user to debug the performance

characteristics of the program.

Dahlia’s modeling of logical time has inspired various other systems at different

levels of the stack. Spade [142], a hardware description language, implements an

affine type system inspired by Dahlia to track the reads and writes to wires every

clock cycle. PDL [164] specifies separation between pipeline stages using a logical

timestep operator inspired by Dahlia’s ordered composition.

52

CHAPTER 4

A COMPILER INFRASTRUCTURE FOR AUTOMATIC

HARDWARE GENERATION

Domain-specific language (DSL) for hardware generation [52, 74, 89, 128] offer

an alternative programming model to high-level synthesis (HLS) tools which aim

to repurpose legacy programming languages for hardware synthesis. By eschewing

generality, such languages can provide high-level abstractions without compromis-

ing on efficiency. However, building a high-performance domain-specific language

is a Herculean task: designers must design, debug, and optimize a compiler that

can effectively generate designs competitive with handwritten register transfer level

(RTL) designs. Compiler infrastructures like LLVM [96] have been successful in the

software community in decoupling the design of languages from optimization tools.

By building a modular compiler infrastructure, new frontend languages can target

an existing, higher-level representation, and delegate the task of optimization to

it.

Chapters 4–6 explore the design of Calyx, a new compiler infrastructure for

building DSLs for hardware design. The key ingredient in the design of compiler

infrastructures is an intermediate language (IL) that the compiler uses to analyze

and transform programs. In order to bridge the semantics of high-level DSLs to

circuit implementations, the Calyx IL intermixes software-like control operators

with hardware-like circuit operators. Calyx also explicitly reasons about cycle-level

timing (§5) in order to optimize generated designs and efficiently with existing

RTL.

53

4.1 Design Considerations

An intermediate language (IL) for automatic hardware generation needs to bridge

the gap between control-dominated computational languages, and structure-dominated

circuit descriptions. Additionally, the IL must be designed so that compilers can

take advantage of the extra control information present when compiling high-level

programs to circuits; such information is hard to encode and extract from circuit

descriptions and is therefore a valuable source for implementing aggressive analy-

ses and optimizations that are not possible for circuit descriptions. Finally, the IL

must support efficient compilation to circuit descriptions; it should not be the case

that the IL’s own abstractions make it difficult to generate optimized circuits.

We describe four design considerations in the implementation of ILs for hardware

generation:

Reasoning about time When bridging the gap between computational lan-

guages and circuit descriptions, the IL needs to reconcile two different notions of

time. Computational programs express time through program order: sequenced

statements must appear as if they execute in the order they are written. On the

other hand, synchronous circuits use clock signals to explicitly track the passage

of time.1 The clock signal is the fastest toggling signal in a circuit and must be

used to track the passage of time and sequence events.

We term ILs that explicitly model the timing behavior of components latency-

sensitive ILs while those that abstract away timing behavior latency-insensitive ILs.
1Circuits will often use more than one clock signal to run different parts of the circuit at

different speeds. For example, the memory circuit might use a clock that’s twice as fast as the
compute circuit to be able to transfer more data per cycle of the compute circuit.

54

The fragment of Calyx presented in this chapter is latency-insensitive. Chapter 5

discusses the trade-off space between latency-sensitive and insensitive ILs in more

detail and describes the latency-sensitive fragment of Calyx.

Representation of control flow The IL must provide some mechanism of rep-

resenting the control flow of the high-level program. Languages such as AHIR [136]

and SynASM [141] use finite state machines to model a program’s execution sched-

ule in a cycle-accurate manner while Calyx, HECTOR [163], and µIR [140] use

high-level constructs such as loops and conditionals to express control flow.

Pipelining Pipelining is a key optimization and crucial for generating high-

performance hardware. Because of this, ILs may choose to include pipelining as

a primitive operation or make it the default semantics of the language. For ex-

ample, HIR embeds pipelining semantics into the IL and requires programs to

ensure no structural hazards are created. One of the sub-languages in HECTOR

directly supports expressing pipelines. Similarly, the pipeline dialect in LLVM

CIRCT [153] is used to express pipelined programs. On the other hand, ILs like Dy-

namatic [83] implicitly pipeline programs: users get a sequential encoding of their

program and the compiler automatically pipelines the design. Adding pipelining

semantics creates an expressivity–efficiency trade-off: directly expressing pipelines

enables efficient encodings but forces high-level programs to generate and interface

with non-pipelined designs. For example, HIR only supports fully-pipelined mod-

ules and therefore makes it impossible to interface with black-box modules that

are partially pipelined. Calyx does not have first-class support for pipelining: while

this allows additional flexibility for frontend compilers that want to express differ-

ent microarchitectural features, it limits Calyx’s ability to perform pipeline-aware

55

group add0 {
 // m0[i], m1[i]
 m1.addr = i.out
 m2.addr = i.out
 // m0[i]+m1[i]
 a0.l = m1.out
 a0.r = m2.out
 // r=m0[I]+m1[i]
 r0.in = a0.out
}

group add1 { … }

group add2 {
 a2.l = r0.out
 a2.r = r1.out
 r2.in = a2.out
}

while cmp.out with cond {
 seq {
 // layer 1
 par {
 add0; add1
 }
 // layer 2
 add2;
 incr_idx; }}

Data path
specification1 Execution

Schedule2

Optimization
Change3

group add2 {
 a0.l = r0.out;
 a0.r = r1.out;
 r2.in = a0.out;
}

(a) Calyx program. Groups
incr_idx and cond elided.

a0 a1

r1

a2

r2

r0

m1 m2 m3 m4

add0 add1

add2

(b) Initial architecture
(groups marked).

m1 m2 m3 m4

a0

a1

r1

r0 r2

(c) Optimized archi-
tecture.

Figure 4.1: Calyx describes the reduction tree using its split representation. The
execution schedule makes the control flow explicit while encapsulate connections
between hardware modules. Done signals (§4.3.3) elided from group definitions.

optimizations.

4.2 Overview by Example

This section introduces Calyx by using it to implement a parallel reduction tree.

A reduction tree applies an operator to many inputs to produce a single output.

Figure 4.1b shows a small summation tree on four inputs. The operators within a

tree level run in parallel to produce the inputs to the next level. Unlike hardware

description languages (HDLs) or high-level synthesis (HLS), Calyx programs are

meant to be generated by compiler frontends. We show that with Calyx’s con-

trol language, compilers can encode the semantics of high-level languages while

producing programs amenable to hardware optimization.

56

4.2.1 Reduction Tree in Calyx

Figure 4.1a shows a Calyx program fragment that implements a parallel reduction

tree that computes (m0+m1)+(m2+m3). The program uses groups to specify the

data path 1 . Groups encapsulate hardware connections that implement an action.

For example, the group add0 uses the hardware adder a0 to compute the sum of the

first two inputs and save the result in a register r0. The assignments used inside

groups correspond to non-blocking assignments in RTL languages—updates to the

left-hand side of an assignment are immediately propagated to the right-hand side.

In this way, each group encapsulates a data flow graph.

To compute the reduction, we need to schedule the execution of the layers. We

want to execute the layers sequentially and to run the adders inside a tree layer in

parallel. The Calyx program specifies the reduction tree’s schedule using a separate

control language 2 . The control language uses group names to activate hardware

connections. Unlike groups, control statements have no direct hardware analog—

instead, they resemble a small imperative program with explicit parallelism. The

schedule iterates over the memories using a while statement and sequences the

execution of the layers using the seq operator. The par operator specifies that the

adders in the first layer will be executed in parallel. Finally, the loop body uses

the group incr_idx to increment the index into the memories.

Figure 4.1b shows the high-level architecture generated from the Calyx program

and marks the connections that correspond to the groups. The figure elides the

control circuitry generated to implement the schedule.

57

4.2.2 Optimizing Accelerator Designs

High-level specifications of accelerators encode a treasure trove of control flow

information that is lost when lowering to a register-transfer level (RTL) language.

Compilers for such programming models need a stable intermediate language (IL)

to capture and use such information. However, RTL is ill-suited for this task.

RTL languages do not distinguish between control flow and data flow because

they implement both using the same structural constructs. For example, in order

to sequence two operations, an RTL program must implement a state machine to

track the current state. Such a state machine is implemented using registers and

adders which are indistinguishable from registers and adders used to implement the

program’s data flow. This conflation means that a compiler cannot automatically

extract and transform the control flow of an arbitrary RTL program.

Consider an optimization that reuses existing circuitry to perform temporally

disjoint computations. For example, our reduction tree uses adders a0 and a2 in

two different stages and never overlaps their execution. Therefore, it would be safe

to transform the program to share a single adder for both the stages. Implementing

this optimization in RTL, however, is difficult because the structural implementa-

tion of a state machine obscures the program’s control flow. To determine that the

two adders run at different times, an analysis would need to reverse-engineer the

execution schedule from the state machine implementation. Furthermore, trans-

forming an RTL program would require pervasive changes. Figure 4.1c shows the

optimized architecture. The transformation requires carefully rewiring the input

and output signals for a0 through multiplexers.

In contrast, a Calyx program makes the control flow explicit and enables

58

straightforward transformation. Given the execution schedule of our Calyx pro-

gram, it is clear that the groups add0 and add2 do not execute simultaneously

since they are scheduled using the seq operator. Figure 4.1a 3 shows the only

change required to implement this optimization. The Calyx program simply re-

names the uses of a2 in group add2 with a0 and the compiler correctly generates

the additional multiplexers and control signals to share the adder.

4.2.3 Structure and Control

Calyx is neither a software IL nor a hardware IL. Software ILs, such as LLVM [96],

focus on providing a uniform representation of the control flow and data flow of

a program. They do not explicitly represent structural facts, such as the mapping

of logical adds onto physical adders. On the other hand, hardware ILs focus on a

purely structural representation with explicit use of gates, wires, and clocks while

conflating data flow with control signals. By marrying structure and control, Calyx

provides access to both structural and control flow facts to enable a new class of

optimizations that cannot be captured by either style of ILs.

4.3 The Calyx Intermediate Language

The Calyx infrastructure’s focal point is its program representation. The Calyx IL

aims to represent domain-specific accelerator designs throughout the entire lifetime

of a hardware generation pipeline: generation from a language frontend, optimiza-

tion and lowering, and implementation in a hardware description language. This

section describes the Calyx IL; the following sections show how to generate, lower

59

and optimize the IL.

4.3.1 Components

Calyx programs consist of components which encapsulate hardware structures and

define an execution schedule to orchestrate their behavior:

component name(inputs) -> (outputs) {
cells { ... }
wires { ... }
control { ... }

}

The body includes hardware-like structural listings of cells and wires (§4.3.2) and

software-like control code (§4.3.3). The input and output ports form the interface

to the component and define their size in bits. For example, a component defining

a 32-bit integer adder uses these ports:

component adder(lhs: 32, rhs: 32) -> (sum: 32)

Ports in Calyx are untyped—they can hold any value of a given width. Calyx leaves

type-based reasoning to the language frontend.

4.3.2 Cells and Wires

Calyx programs explicitly instantiate components and define the connections be-

tween them in a way that closely resembles RTL languages. This low-level of detail

gives frontends precise control over fine-grained architectural choices when needed

and lets Calyx lower programs to synthesizable RTL.

The cells section instantiates components:

60

cells {
a_reg = std_reg(32); // 32-bit register
add = std_add(32); // 32-bit adder

}

This example instantiates a register and an adder that operate on 32-bit values

using the std_reg and std_add components. The wires section defines assignments

between the ports of components:

wires {
add.left = a_reg.out;
add.right = a_reg.out;

}

These assignments connect the out port of the register to the two input ports of

the adder. The connections are non-blocking: updates to a_reg.out are immedi-

ately visible to add.left. This closely resembles non-blocking assignments in RTL

languages.

Wire assignments can specify more complex dataflow policies by using guarded

assignments:

add.left = cmp.out ? a_reg.out;
add.left = !cmp.out ? b_reg.out;

The guarded assignments to the left port of the add component use the value of

cmp.out to determine the assignment to activate. Guards are built with ports and

a simple language of boolean connectives.

Like its RTL counterparts, Calyx requires that each port have a unique driver—

activating multiple assignments in the same cycle results in undefined behavior.

This requirement also differentiates Calyx’s guarded assignments from Bluespec’s

atomic rules [120]. While Bluespec resolves conflicting assignments by generating

scheduling logic to dynamically abort them, Calyx does not. Being an intermediate

language, Calyx trades-off the convenient programming abstraction for predictable

61

compilation.

Guarded assignments in Calyx correspond exactly to assignments in RTL lan-

guages. By themselves, they can encode arbitrary hardware designs, but are less

amenable to analysis and transformation. The next section describes Calyx’s two

novel constructs that simplify the specification of a program’s structural connec-

tions and its execution schedule.

4.3.3 Groups and Control

Calyx uses groups to encapsulate assignments. Inside a group, assignments must

obey the same constraints as RTL—unique drivers for ports, no combinational

loops, etc. However, multiple groups can use the same port:

group assign_one { x_reg.in = 1; ... } // x_reg = std_reg(32)
group assign_two { x_reg.in = 2; ... }

Both groups unconditionally assign to the same port. However, since the groups

encapsulate the assignments, they are not active by default and do not violate the

unique driver requirement. In contrast, RTL languages require programmers to

reason about all assignments to a port and weave in control signals to define a

unique driver.

The control program determines when groups run:

control { seq { assign_one; assign_two } }

The control block uses the seq (sequence) statement to specify that assign_one

executes first, followed by assign_two. Since the two groups execute at different

times, the two assignments to the port x_reg.in do not conflict and Calyx can

generate valid RTL.

62

While control statements like seq can pass the control flow of a program to a

group, they have no way to know when to return—groups can encode arbitrary

computations that don’t have an obvious done condition. To signal when it has

finished executing, a group use a done signal:

group assign_one {
x_reg.in = 1;
assign_one[done] = x_reg.done;

}

In the above group, we are writing a value to a stateful element x_reg, and must

wait for the element to signal that the write was committed. The group uses the

value from the output port x_reg.done to signal that the group’s computations

has finished.

Interface signals, such as a group’s done signal, are used by Calyx to define

a calling convention (Section 4.5.1). A control program passes control flow to a

group by setting a group’s go to 1. A group returns control back to the control

program by setting its own done condition to 1. Similarly, components use go and

done interface signals to define a consistent calling convention. Calyx’s interface

is latency-insensitive; it does not reason about the number of cycles needed to

execute a computation. Chapter 5 describes the Calyx extension used to reason

about latency-sensitive computations.

Groups serve a similar purpose to basic blocks [6] in a software intermediate

language. They delineate data-flow from control-flow and allow the compiler to im-

plement scalable analyses and optimizations. However, unlike basic blocks, groups

in Calyx can encode arbitrary circuits which means that Calyx’s ability to optimize

the contents of a group itself is limited.

63

Combinational groups Calyx additionally supports a restricted, combinational

version of groups:

comb group compute_cond {
gt.left = reg.out; // gt: std_gt(32)
gt.right = 32'd10;

}

Combinational groups only execute assignments for one cycle and are useful for

performing simple computations like comparisons.

4.3.4 Control Statements

Calyx provides several primitives to encode the schedule of components. We de-

signed these primitives to capture high-level properties such as branching and

looping, freeing frontends from the need to realize them in control circuitry.

enable Naming a group inside a control statement passes control to the group.

invoke Invocations pass the control flow to the given component and connects

the provided ports values to the input of the component.

component mac(a: 32, b: 32, c: 48) -> (out: 48) { ... }
component main() {

...
control {

invoke foo(.a = r0.out, .b=r1.out, .c=acc.out)(acc.in = .out)
}

}

par List of control statements that execute once in parallel.

par {
group_a; // thread 1
seq { group_b; group_c; }; // thread 2

64

group_d; // thread 3
}

The control operator provides no guarantee on the execution order of the threads.

For example, it is incorrect to assume that group_a and group_d will start execution

in the same clock cycle. This restriction allows the compiler to freely reschedule

and combine parallel threads to optimize the program.

seq List of control statements executed in order.

seq { group_a; par { group_b; group_c; }; group_d; }

if Conditionally executes one of the branches. Specifies a port to use as the 1-

bit conditional value (port_name) and a combinational group (comb_group) to

compute the value on the port.

if port_name with comb_group {
true_stmt

} else {
false_stmt

}

while The loop statement is similar to the conditional. It enables comb_group

and uses port_name as the conditional value. When the value is high, it executes

body_stmt and recomputes the conditional using cond_group.

while port_name with comb_group {
body_stmt

}

65

4.3.5 Attributes

Calyx programs can use attributes to encode frontend and pass-specific information

such as the latency of a group. Attributes are key-value pairs. For example, the

following group defines an attribute “latency” and associates the value 1 to it.

component main(clk c: 1) ... // ports use the <attr>(<val>) syntax
group foo<"latency"=1> { ... }

4.3.6 Synopsis

Components are the building blocks of Calyx programs. Each component instanti-

ates subcomponents (cells) and defines the connections between them (wires). The

control program defines the execution schedule by enabling groups.

The design principle behind Calyx is thus: in general, frontends generate small

groups to perform simple actions, such as incrementing a register or comparing

values, and use the control flow program to schedule them. However, when a fron-

tend wants to instantiate a domain-specific construct efficiently, it can utilize the

full power of Calyx’s structural language and precisely specify the RTL description

of the implementation which can then be encapsulated using groups. Calyx’s op-

timization passes (§4.6) can then utilize the control flow information to optimize

the design.

4.4 Targeting Calyx

Calyx intermixes software and hardware abstractions. In this section, we demon-

strate how these abstractions can be used to express well-known architectures such

66

as systolic arrays [92] as well as be used in the design of an HLS tool by compiling

Dahlia (§3) to Calyx. Chapter 6 extends and evaluates these implementations in

more depth.

4.4.1 Systolic Array Generator

Systolic arrays [92] are a class of architecture exploit data reuse opportunities in

arithmetically intense computations such as dense linear algebra computations.

They power the recent wave of state-of-the-art linear algebra accelerators for ma-

chine learning [58, 84]. Figure 4.2 shows an example systolic array. The data

moves left-to-right and top-to-bottom through chains of registers. Processing el-

ement (PE) attached to the registers perform some computation using the values

within the registers. Once the computation is completed, all the data moves to

the next register.2 Systolic arrays can maintain a high throughput because data is

reused between PEs and, in steady state, each PE is simultaneously operating on

different parts of the computation.

We overview the design of a systolic array in Calyx which is abstract in the

processing element being used. We demonstrate how groups allow simple encoding

of data movement and computation stages and how the control program enables

us to schedule the computation.

Processing elements The design of our systolic array is abstract with respect

to the processing element. We only require the processing element to conform to

the following signature:
2This pattern of interleaved compute and data movement induces a comparison to heartbeats

which inspired the name “systolic arrays”.

67

PE11

T0 T1

L0

L1

PE11

PE11

PE11

l0
t0

pe00

Figure 4.2: Architecture for a 2×2 by 2×2 matrix-multiply systolic array. High-
lighted boxes show some of the groups used by the control.

component pe(go: 1, left: 32, right: 32) -> (done: 1, out: 32) { ... }

The PEs must also track their own internal state. For example, a systolic array

for output-stationary matrix multiplication will implement the PE using a multiply-

accumulate unit that stores the results in an internal register.

Since Calyx does not reason about latency of the computation, the component

presents a go-done interface to interact with the rest of the design. Our actual

implementation (§6.2) uses a mix of latency-sensitive (§5) and latency-insensitve

abstractions.

Architecture Figure 4.2 shows the desired architecture for a 2×2 systolic array.

When designing the array in Calyx, we need to instantiate the subcomponents

using the cells section, connect them together using groups, and coordinate their

execution using a control program.

68

Cells We instantiate the name of the registers and PEs using their index on a

two-dimensional grid. For example, PE00 is the top-left PE while register l00 is the

top-left register. The memories connected to the systolic array are named Li and

Ti respectively.

component sa(...) {
cells {

L_0 = std_mem_d1(32, 8, 3); // 8-element, 32-bit memory indexed
using 3-bit number

PE_00 = pe(); // Processing element for this array
l_00 = std_reg(32); // 32-bit register

}}

Building blocks Calyx’s group abstraction allows us to define easily define vari-

ous actions that the systolic array must perform. For example, the following group

moves the value from register l00 to l01:

group move_l00 {
l_01.in = l_00.out;
l_01.write_en = 1;
move_l00[done] = l_01.done;

}

Similarly, the following group reads the final value stored in PE00 at the end of the

computation into an output register:

group read_pe00 {
out_00.in = PE_00.out;
out_00.write_en = 1;
read_pe00[done] = out_00.done;

}

While we can manually write down a group to execute a PE’s control program,

invoke statements make it much simpler:

invoke PE_00(.left = l_00.out, .top = t_00)(); // .out left unconnected

With these elements, we have the basic building blocks for a systolic array.

69

Scheduling computation The next step is to schedule the computation of a

systolic array. We focus on the steady state case and elide details about the pipeline

fill and pipeline drain stages. In steady state, all processing elements need to per-

form their computation and, once they complete, the registers can move their data

forward. This process needs to continue while we have a stream of valid data ar-

riving.

// pipeline fill
while data_is_valid {

seq {
par { invoke PE_00(..); invoke PE_01(..); ...}
seq { // data movement

par { move_l0n; move_l1n; ..; move_tn0; move_tn1 .. }
...
par { move_l00; move_l10; ..; move_t00; move_t01; .. }

}}}
// pipeline drain and data read

The data_is_valid port is left abstract but should assert 1 when there is a

valid data element in every memory on the left and the top. Because the processing

elements use a latency-insensitive interface, they can each take a variable number

of cycles; the first par block will wait for all invocations to complete before finishing

up. The subsequent seq block schedules the data movement groups by first moving

data from the second to the rightmost layer to the rightmost layer, and second to

bottom-most layer to the bottom-most layer. It repeats this process for each layer

of registers.

Discussion Calyx’s abstractions simplify the expression of complex architectural

designs such as systolic arrays. The latency-insensitive interface allows us to flex-

ibly design our systolic array and easily replace out the processing element imple-

mentations. However, the same latency-insensitive interface forces us to carefully

orchestrate the data movement between registers. If Calyx allowed us to model the

timing behavior of data movement groups, we could exploit the fact that writing

70

let x = 0

if (x > 10) {

x := 1;
} else {

x := 2;
}

(a) Dahlia program

group init { x.in = 0; init_x[done] = x.done;}
group one { x.in = 1; one[done] = x.done;}
group two { x.in = 2; two[done] = x.done;}
group cond { gt.l = x.out; gt.r = 10; cond[done] = 1;}
...
seq {

init_x;
if gt.out with cond { one } else { two }

}

(b) Generated Calyx

Figure 4.3: Process of compiling Dahlia programs. Each statement becomes a group
and control flow is encoded using control operators.

to a register takes exactly one cycle and enable all data movement groups at the

same time allowing us to cut down an n-cycle computation to a single cycle. This

tension between abstracting away timing details and exploiting them for efficiency

is an ever-present tension in hardware design. Chapter 5 describes an extension

to Calyx that allows for precise modeling of timing when needed while composing

cleanly with the Calyx’s existing latency-insensitive abstractions.

4.4.2 Dahlia

We overview the design of an HLS tool that compiles Dahlia programs (§3)

to Calyx. Unlike register transfer level (RTL) languages which require programs

to be encoded in a cycle-sensitive manner and utilize explicit control signals to

manage resources, Calyx’s abstractions are well-suited for the design of a stan-

dard, syntax-driven compiler which recursively compiles each statement without

needing to reason about other statements. Furthermore, Calyx’s explicit parallel

and sequential composition operators allow for direct mapping of Dahlia’s ordered

and unordered composition operators (§3.2).

71

Lowered Dahlia Before compiling Dahlia, we desugar high-level language con-

structs:

• Unroll loops and partition memories using user-specified information (§§ 3.2.3

and 3.2.4). The compilation process follows the desugaring rules from Dahlia

to DCore (§3.3). This ensures that we correctly insert Dahlia’s ordered and

unordered composition operators.

• Transform for-loops into while loops.

• Compile away views (§3.2.6).

This results in an imperative language with a few constructs: variables, unpar-

titioned memories, while loops, conditionals, and Dahlia’s two novel composition

operators: unordered composition (;) and ordered composition (---).

Generating Calyx Figure 4.3 shows how a Dahlia program is compiled to Ca-

lyx. Each program statement is mapped to a group and the execution of groups

is controlled using the control operators. For example, the statement x := 1 is

encoded using the group one.

The compiler walks over the program abstract syntax tree (AST) and allocates

new registers for each variable in a scope and instantiates a new circuit for each

binary operator it sees. Control constructs have a direct mapping to operators in

Calyx: ordered composition maps to seq, unordered composition to par, condition-

als to if, and loops to while. A complete overview of the compiler is presented in

Section 6.3.

72

Discussion Calyx’s software-like abstractions allow easy encoding of high-level

programs. Instead of having to directly transform logical time steps in Calyx to

discrete clock-cycles in an RTL language, we can utilize Calyx’s control operators

to more naturally encode the programs. While easy to implement, the described

compiler has several limitations: (1) it allocates a large number of circuits to im-

plement a particular control-data flow graph, (2) it does not take advantage of

latency-information of specific operations, and (3) it does not generated pipelined

designs. Calyx’s optimizations (§4.6) addresses the first problem and Calyx’s static

extension (§5) addresses the second problem. The last problem is more fundamen-

tal: Calyx requires frontends to explicitly generate pipelines. While this dissertation

does not describe such a compiler, Calyx has been used to design HLS tools that

generate pipelined designs.

4.4.3 Summary

The Dahlia compiler represents an archetype for a Calyx-based compiler which has

three key ingredients: (1) the abstract architecture for the domain, (2) a mapping

from source constructs to Calyx constructs, and (3) a strategy to generate groups

and control. For Dahlia, the architecture corresponded directly with the control

language; for systolic arrays, we used a templated design with a latency-insensitive

interface. In both compilers, we used groups and control to modularize and compose

data flow graphs, which is not possible when generating RTL directly.

73

group one {
 x.in = 1;
 one[done] = x.done;
}
group two {
 x.in = 2;
 two[done] = x.done;
}

control {
 seq { one; two }
}

(a) Original

group one {
 x.in = one[go] ? 1;
 one[done] = x.done;
}
group two {
 x.in = two[go] ? 2;
 two[done] = x.done;
}

control {
 seq { one; two }
}

(b) GoInsertion

group one { … } // Unchanged
group two { … }
group seq0 {
 // enable contained groups
 one[go] = fsm.out == 0 ? 1;
 two[go] = fsm.out == 1 ? 1;
 // FSM state updates
 fsm.in =
 fsm.out == 0 & one[done] ? 1;
 fsm.in =
 fsm.out == 1 & two[done] ? 2;
 seq0[done] = fsm.out == 2 ? 1;
}
control { seq0 }

(c) CompileControl

wires {
 x.in = fsm.out == 0 ? 1;
 x.in = fsm.out == 1 ? 2;

 fsm.in =
 fsm.out == 0 & x.done ? 1;
 fsm.in =
 fsm.out == 1 & x.done ? 1;

 // done condition for the component
 done = fsm.out == 2 ? 1;
}

control { /* empty */ }

(d) RemoveGroups

Figure 4.4: Calyx realizes the execution schedule by encoding it with structural
components. After the CompileControl pass (c), the fsm register encodes the
current state for the seq statement.

4.5 Compiling Calyx to Hardware

The Calyx compiler optimizes (§4.6) and lowers Calyx programs into synthesizable

RTL. Compilation passes use interface signals, which define a calling convention,

to realize a component’s execution schedule. The result is a Calyx program with a

flat list of guarded assignments and no control statements or groups. The compiler

can then directly translate this flattened form into RTL. The primary compilation

passes are:

• GoInsertion: Guards all assignments in a group with the group’s go inter-

face signal.

• CompileControl: Generates latency-insensitive finite state machines to

structurally realize control operators.

• RemoveGroups: Inlines uses of interface signals and eliminates all groups.

• Lower: Translates control-free Calyx to RTL.

Figure 4.4 illustrates the main steps. This section describes the complete compila-

tion process.

74

4.5.1 Calling Convention

To realize a Calyx program’s execution schedule, the compiler needs a mechanism

to pass control flow in purely structural programs. We use a pair of interface signals

to define this interface: when a group sets another group’s go signal high, control is

passed to that group and it can enable assignments within it; when a group sets its

own done signal high, it passes control back. This interface resembles traditional

latency-insensitive hardware design [27] but, unlike a pipelined interface, does not

support backpressure signals.

Most passes treat interface signals like any other 1-bit port. The main compi-

lation passes treat them specially—using them to wire up the control signals. The

final compilation pass eliminates interface signals by inlining them.

4.5.2 Compilation Workflow

We describe the compilation pipeline by compiling the example Calyx program in

Figure 4.4a.

Inserting go interface signals Calyx’s semantics requires that assignments

within a group are only enabled when the group executes. To enforce this require-

ment, the GoInsertion pass inserts the group’s go signal into the guards of the

contained assignments. Figure 4.4b shows the resulting program: one[go] guards

assignments in group one while two[go] guards assignments in group two. When

all groups are eventually removed, these guards will ensure that the correct set of

assignments are active at a given time.

75

Compiling control using interface signals The next step in the compilation

process is realizing the control program using a structural implementation. Compi-

lation relies on two important properties of Calyx: (1) groups can encode arbitrary

computations, and (2) all groups are treated uniformly, regardless of the compu-

tation they perform—a group that increments a register is compiled the same way

as a group that runs a systolic array.

The CompileControl pass performs a bottom-up traversal of the control

program and does the following: (1) for each control statement, such as seq or

while, instantiate a new group, called the compilation group, to contain all the

structure needed to realize the control statement, (2) implement the schedule by

setting the constituent groups’ go and done signals, and (3) replace the statement

in the control program with the corresponding compilation group. After this pass,

every component’s control program is reduced to a single group enable.

Figure 4.4c shows these transformations. The pass defines a new group seq0 to

encapsulate the structure required to realize the seq statement as well as a new

register fsm to track the current state. Next, the pass enables the groups contained

in the seq by writing to their go interface signals and updates the FSM state when

the groups set their done signal high. The done condition for seq0 is when the

FSM reaches its final state. Finally, the pass replaces the seq control statement

with the group seq0.

Inlining interface signals The RemoveGroups pass inlines all uses of inter-

face signals and removes all groups. It performs three transformations:

1. Add new go and done ports to each component definition and wire them up

to the single group enable in the control program.

76

2. Collect all writes to a group’s go and done signals and inline them into

all uses of the signals. If there are multiple writes to a signal, replace the

corresponding reads with a disjunction of the written expressions. This step

eliminates all interface signals from the component.

3. Remove all groups. Since all assignments are guarded by expressions that

encode the schedule, it is safe to remove the groups and place them in the

top-level wires section.

Figure 4.4d shows the resulting program that contains no groups, interface signals,

or control statements.

Code generation Each component now contains a flat list of guarded assign-

ments. The Lower pass generates SystemVerilog programs by mapping each com-

ponent to a module, generating wires for all the ports, and threading a clock signal

through the design.

4.5.3 Compiling Control Statements

The CompileControl pass performs a bottom-up traversal of the control pro-

gram, encodes the control flow of each control statement using structural compo-

nents, and replaces its use with corresponding compilation group. This example

illustrates the timeline of bottom-up elimination of control statements:

control { par {
seq { one; two; }
seq { foo; bar; }

}}

control { par {
seq0;
seq1;

}}

control {
par0;

}

77

We sketch the CompileControl pass’s strategies for implementing each control

statement in Calyx.

par A par control block enables all groups inside it and finishes executing when

all groups have signaled done once. Since groups may finish executing at different

times, the pass generates a 1-bit register to save each child group’s done signal.

The go signal for each child group is set to high when the value in this register is 0.

The done signal for the compilation group is 1 when all the 1-bit registers output

1.

if Calyx’s semantics dictate that an if statement executes a group cond before

reading the value from a port and deciding which branch to execute. cond is sup-

posed to update the value on the port. The pass generates two 1-bit registers: cc

which tracks if cond has been executed, and cs to store the value of the port gener-

ated after executing cond to ensure that the value of the port is available through

the execution of the branches. The compilation group enables either branch using

the value in cs and finishes executing when the branch’s done signal is high.

while The loop compilation strategy resembles the one for if. The group runs

the condition group, saves the value from the condition port to a register, and uses

it to either enable the group in the body. The compilation group finishes executing

when the value of the conditional port is 0.

Resetting compilation groups Compilation groups reset their internal state

to operate correctly within loops. The pass generates assignments that reset the

value of internal state elements when a compilation group sets its done signal high.

78

group let_r0 { r0.in = 0 }
group let_r1 { r1.in = 0 }
group incr_r0 {

a0.l = r0.out; a0.r = 1;
r0.in = a0.out; }

group incr_r1 {
a1.l = r1.out; a1.r = 1;
r1.in = a1.out; }

(a) Defined groups. r0 and r1 are registers; a0
and a1 are adders.

seq {
par {

let_r0;
let_r1;

}
incr_r0;
incr_r1;

}

(b) Schedule with resource sharing op-
portunities.

Figure 4.5: Resource sharing example. Since incr_r0 and incr_r1 do not run in
parallel, they can share their adders.

4.6 Optimizing Calyx Programs

Unlike RTL languages, where control-flow information is encoded into ad-hoc regis-

ters, Calyx’s representation explicitly encodes control-flow information along with

circuit information. Because of this, Calyx can implement analyses and optimiza-

tion that transform details of the circuit using control-flow information. Further-

more, since Calyx is not tied to the RTL abstraction, optimizations can change

both the precise timing and the structure of the final circuit.3 We describe two

passes in the Calyx compiler that optimize the resource usage of a design. Sec-

tion 5.4 describes additional optimizations that work with Calyx’s latency-sensitive

abstractions and Chapter 6 evaluates the optimizations.

4.6.1 Resource Sharing

Resource sharing is an optimization that reuses existing circuits to perform

temporally disjoint computations. For example, if an accelerator needs to perform

two add operations that are never executed in parallel, it can map them to the
3The RTL abstraction considers registers sacrosanct and, with very few exceptions, does not

change the timing behavior of the circuit or how it uses the registers.

79

same physical adder. Calyx is uniquely suited to implement such optimizations

which require both control flow facts (if two computations run in parallel) and

structural facts (which physical adder performs an add).

Calyx implements a group-level resource sharing optimization: if two groups

are guaranteed to never execute in parallel, they can share components. This pass

does not attempt to share stateful components because state is visible across groups.

Frontends use the "share" attribute (§4.3.5) to denote that a component is safe to

share.

component adder<"share"=1> { ... }

The pass uses the execution schedule of a component to calculate which groups

may run in parallel and uses the encapsulation property of groups to implement

sharing. It proceeds in three steps:

Building a conflict graph A conflict graph summarizes potential conflicts—

nodes denote groups and edges denote that the groups may run in parallel. The

pass traverses the control program and adds edges between all children of a par

block. For example, in Figure 4.5b, the groups let_r0 and let_r1 conflict with

each other while incr_r0 and incr_r1 do not. If the children of the par block are

themselves control programs, the pass adds edges between the groups contained

within each child.

Greedy coloring The pass performs a greedy coloring over the conflict graph to

allocate shareable components to each group. If two groups have an edge between

them, they cannot have the same components. The result of this step is a mapping

from the names of old components to new components. For example, in Figure 4.5a,

80

incr_r1 gets the mapping: a1 7→ a0.

Group rewriting In the final step, the pass applies local rewrites to groups

based on the mapping. The simplicity of this step comes from the encapsulation

property of groups—a rewriter does not have to reason about uses of a component

outside the group.

Resource sharing demonstrates Calyx’s flexibility in analysis and transformation—

passes can recover control flow information from the schedule and use groups to

perform local reasoning.

4.6.2 Component Sharing via Live-Range Analysis

Group-local reasoning is insufficient for sharing stateful elements such as registers;

writes to a register in one group are visible in other groups. To enable register

sharing, we implement a live-range analysis that, for each register, determines the

last group in the execution schedule to read from it. Since the register is guaranteed

to never be used afterwards, subsequent groups can reuse the register. Live-range

analysis is common in software compilers but is infeasible in RTL languages since

the control flow of the program is not explicit.

We overview the component sharing pass using registers as the exemplar com-

ponent. Our compiler implements a generalized version that supports arbitrary

user-level and primitive components. Our live-range analysis has to contend with

two problems: (1) inferring which groups read and write to registers, and (2) coping

with the par blocks in the control program.

81

seq {
A;
if cond.out with G {

B;
} else {

par {
seq { x0; x1; }
seq { y0; y1; }}}

C;
}

(a) Calyx program.

p0start

end

A

C

B p0

start

end

x0

x1

start

end

y0

y1

(b) A visual representation of a pCFG.

Figure 4.6: A Calyx program along with the corresponding parallel control flow
graph (pCFG).

Parallel control flow graphs We handle par blocks using parallel control flow

graphs (pCFGs) based on the work of Srinivasan and Wolfe [144]. Most control

operators in Calyx map directly to a traditional CFG. However, par statements

need special handling since, unlike an if statement which executes one of its two

branches, a par statement executes all its children. While writes to a register in a

conditional branch may be visible after the if statement, writes within children of

par blocks are always visible after the par block.

Parallel CFGs introduce a new kind of node—called a p-node—to handle par

blocks (p0 in Figure 4.6b). A p-node represents an entire par block and recursively

contains a set of pCFGs representing its children. In Figure 4.6b the p-node has

two children.

Calculating read and write sets Calyx implements a conservative analysis

pass to determine the registers that groups and p-nodes read from and write to.

Both groups and p-nodes can, in general, contain complex logic, so the pass must

conservatively over-approximate these sets. The read set is the set of registers a

82

group or p-node may read from and the write set is the set of registers they must

write to. The data-flow analysis uses this information to determine the range each

register is alive.

Computing liveness The pass uses a standard data-flow formulation to com-

pute the live ranges. The only aspect that needs special handling is the children

of p-nodes. For these, we set the live sets at the end of each child to be the set of

live registers coming out of the p-node.

Sharing registers The pass uses the liveness information to build a conflict

graph where nodes are registers and edges denote overlapping live ranges. The

pass performs greedy coloring over this graph using registers as colors and rewrites

groups in a similar manner to resource sharing.

4.7 Discussion

Calyx defines a new intermediate language that bridges the gap between com-

putational programs and circuit descriptions. We overview Calyx’s core design

principles, which enable modular reasoning of circuits while allowing for precise

specification (§4.3), how frontends can generate a variety of domain-specific archi-

tectures (§4.4), and how Calyx can exploit the representation to optimize programs

(§4.6).

Chapter 5 discusses an extension to Calyx that allows for precise reasoning

about timing without compromising on modularity. Chapter 6 implements and

evaluates frontends that use Calyx.

83

CHAPTER 5

COMPOSITIONAL, TIME-SENSITIVE REASONING FOR

HARDWARE GENERATION

Chapter 4 describes the initial design of Calyx, an intermediate language for

hardware generation. Calyx uses latency-insensitive interfaces to compose pro-

grams which allows for scalable and modular program optimizations. However,

this compositionality comes at a cost: Calyx cannot correctly express optimiza-

tions that fundamentally rely on timing information. In this chapter, we extend

Calyx to reason about timing behaviors without losing Calyx’s compositional na-

ture. The key insight is that latency-sensitive execution schedules of a program

are a refinement of latency-insensitive execution schedules. This allows us to em-

bed a latency-sensitive operators into Calyx without losing the compositionality of

Calyx’s latency-insensitive operators.

5.1 Static Abstractions for Calyx

We refer to Calyx’s latency-sensitive extensions as static operators since they

allow us to statically reason about timing behavior. Latency-insensitive operators

are called dynamic operators since they do not have statically known timing be-

haviors. Figure 5.1 shows these extensions in context of a simple component that

performs the computation (a+ b)× c÷ d. The extensions are highlighted in green.

Sections 5.1.1 and 5.1.2 overview the extensions to the structural and control sec-

tions respectively.

84

1 component expr(a:32,b:32,c:32,d:32)->(out:32) {
2 cells {
3 add = std_add(32); // 32-bit adder
4 mult = std_mult(32); // 32-bit multiplier
5 div = std_div(32); // 32-bit divider
6 }
7 wires {
8 static<1> group do_add {
9 add.left = %[0:1] ? a;

10 add.right = %[0:1] ? b;
11 // no done condition
12 }
13 static<3> group do_mult {
14 mult.left = %[0:3] ? add.out;
15 mult.right = c; // implicit %[0:3] guard
16 // no done condition
17 }
18 group do_div {
19 div.go = 1;
20 div.left = mult.out;
21 div.right = d;
22 do_div[done] = div.done;
23 }
24 out = div.out;
25 }
26 control {
27 seq {
28 static seq { do_add; do_mult; }
29 do_div;
30 }}}

Figure 5.1: A Calyx component that computes (a+b)×c÷d. The static extensions
are shown in green.

5.1.1 Static Structural Abstractions

We add new, time-sensitive structural abstractions: static components and static

groups.

Static components Where Calyx’s existing dynamic components, such as std_div

, use a go signal to start computation and a done signal to indicate completion,

static components only use go. Compare the interface of a multiplier to that of a

divider:

85

static<3> primitive std_mult[W](
go: 1, left: W, right: W) -> (out: W);

primitive std_div[W](
go: 1, left: W, right: W) -> (out: W, done: 1)

The static<n> qualifier indicates a latency of n cycles that is guaranteed to be

preserved by the compiler.

Static groups and relative timing guards Static groups in Calyx use rela-

tive timing guards, which allow assignments on specific clock cycles. This group

computes ans = 6× 7:

static<4> group mult_and_store {
mult.left = %[0:3] ? 6;
mult.right = %[0:3] ? 7;
mult.go = %[0:3] ? 1; // run the multiplier
ans.in = %3 ? mult.out; // ans is a register
ans.write_en = %3 ? 1; // assert write enable

}

Like do_div in Figure 5.1, the group sends operands into the left and right ports

of an arithmetic unit. Here, however, relative timing guards encode a cycle-accurate

schedule: a guard %[i:j] is true in the half-open interval from cycle i to cycle j

of the group’s execution. The assignments to ports mult.left and mult.right are

active for the first 3 cycles. The guard %3 is syntactic sugar for %[3:4], so the write

into the ans register occurs on cycle 3. The static<4> annotation on the first line

tells us the group is done on cycle 4.

Calyx’s relative timing guards resemble cycle-level schedules in some purely

static languages [103, 117]. However, they count relative to the start of the group

rather than the entire component. This distinction is crucial since it lets Calyx use

static groups in both static and dynamic contexts.

86

5.1.2 Static Control Operators

We provide a static alternative to each dynamic control operator in Calyx. Unlike

the dynamic versions, static operators guarantee specific cycle-level timing behav-

ior. The static qualifier marks static control operators. While dynamic programs

may contain both static and dynamic children, static programs must only have

static children. We write |c| for the latency of a static program c.

Sequential composition A static seq like this:

static seq {c1; c2; ...; cn;}

has a latency of
∑n

1 |ci| cycles. c1 executes in the interval [0, |c1|) after the seq’s

start, c2 in [|c1|, |c1|+ |c2|), and so on.

Parallel composition A static par statement:

static par {c1; c2; ...; cn;}

has latency maxn
1 |ci|. Program ci is active between [0, |ci|) The parallel threads in

a static par can depend on the “lockstep” execution of all other threads. Threads

can therefore communicate, whereas conflicting parallel state accesses in Calyx are

data races and therefore undefined behavior (§4.3.4).

Conditional Static conditionals use a 1-bit port p:

static if p { c1 } else { c2 }

The latency is the upper bound of the branches, max(|c1|, |c2|).

87

Iteration There is no static equivalent to Calyx’s unbounded while loops. We

instead add static and dynamic variants of fixed-bound repeat loops:

static repeat n { c }

The body executes n times, so the latency is n× |c|.

Invocation static invoke corresponds to Calyx’s function-call-like operation

and requires the target component to be static. The latency is that of the invoked

component.

Group enable A leaf statement can refer to a static group (e.g., do_add in

Figure 5.1). The latency is that of the group.

5.1.3 Unification Through Semantic Refinement

The new static constructs are all semantic refinements [50] of their dynamic coun-

terparts in Calyx. The semantics of dynamic code admit many concrete execution

schedules, such as arbitrary delays between group executions. Each static construct

instead selects one specific cycle-level schedule from among those possibilities.

Refinement enables incremental adoption: a frontend can first generate purely

dynamic code, establish correctness using the simpler Calyx semantics, and then

opportunistically add static qualifiers. We can establish correctness for the static

code by the same argument as the original code, since it admits a subset of the

original’s cycle-level executions. However, the other direction is not true: a static

program may rely on specific timing behavior for its correctness and cannot be

safely scheduled as a dynamic program.

88

Semantic refinement also enhances optimization (§5.4.3). Optimization passes

in Calyx can now utilize timing information to expose more optimization opportu-

nities in static code. New optimizations can also combine information across static

and dynamic code enabling hybrid optimizations across static and dynamic oper-

ators. Finally, the refinement property also means that the Calyx compiler may

automatically infer static qualifiers for some code (§5.4.2).

5.2 Targeting Static Abstractions

We overview how frontends can target Calyx’s static abstractions by extending the

systolic array generator the Dahlia-to-Calyx compiler (§§ 4.4.1 and 4.4.2).

5.2.1 Systolic Array

Static abstractions allow architectures like systolic arrays to precisely orchestrate

their computation. We build upon the design described in Section 4.4.1 which uses

groups to move data across the registers and schedules their execution using the

following control program:

while data_is_valid {
seq {

par { invoke PE_00(..); invoke PE_01(..); ...}
seq { // data movement

par { move_l0n; move_l1n; ..; move_tn0; move_tn1 .. }
...
par { move_l00; move_l10; ..; move_t00; move_t01; .. }

}}}

Recall that each step in the systolic array takes N cycles where N is the number

of rows because Calyx’s par operator does not guarantee lockstep execution of the

groups. For example, this means that we are moving data from register t00 to t10

89

and t10 to t20, we cannot guarantee that the reads and writes from the register will

occur in the same cycle. This means that t00 might write its value into t10 before

t10 has written its value into t20. To ensure correct date movement, we have to

sequence each step.

In contrast, with Calyx’s new static abstractions, we can invoke all of these

groups in parallel:

static<1> group move_l01 {
l01.in = l00.out; l01.write_en = 1;

}
static<1> group move_l02 {

l02.in = l01.out; l02.write_en = 1;
}
...
control {

while data_is_valid {
seq {

par { invoke PE_00(..); invoke PE_01(..) }
static par { move_l00; move_l01; ..; move_tnn; }

}}}

This made possible because we know that writes to registers take exactly one cycle

and that the static par operator starts executing each thread in the same cycle.

Furthermore, if the processing element can accept new inputs every clock cycle, we

can further optimize the control program.

while data_is_valid {
seq {

static par {
invoke PE_00(..); invoke PE_01(..);
move_l00; move_l01; ..; move_tnn;

}}}}

Our full systolic array generator takes advantage of this to implement efficient

matrix multiplication followed by post operations (§6.2).

90

5.2.2 Dahlia Compiler

Static abstractions can also be useful for optimizing Dahlia programs. For example,

when multiplying two numbers, we know that the computation will take exactly

three cycles. This means we can write the following static group:

static<3> group do_mult {
m0.left = a; m0.right = b; m0.go = 1;

}

However, it might end up being the case that this would be the only static group

surrounded by many other dynamic groups:

while cond {
read_a; // dynamic
do_mult; // static
write_b; // dynamic

}

In such cases, the cost of compiling an individual group statically might outweigh

the benefits it provides (§5.3). Instead of requiring the compiler to schedule this

group statically, we would instead like to provide the option to the compiler in case

it is useful. For this purpose, the Dahlia compiler will still emit a dynamic group

but add an annotation to tell Calyx that this group may be scheduled statically if

beneficial:

group do_mult<"promote"=1> {
m0.left = a; m0.right = b; m0.go = 1; do_mult[done] = m0.done;

}

Our new static promotion pass (§5.4.1) might decide to schedule this group stati-

cally if it ends up being beneficial.

This demonstrates an alternative and incremental use case for static abstrac-

tions: instead of requiring frontends to make the decision about which parts of

programs are best represented statically, we give the ability to add information to

91

Piezo
(Static & Dynamic)

Cell Sharing
(§5.3)

Promotion
(§5.1)

Compaction
(§5.2)

Collapse Control
(§4.1)

Instantiate FSMs
(§4.2)

Wrapper Insertion
(§4.3)

Calyx
(Purely Dynamic)

Optimizations (§5) Compile Static Islands (§4)

Synthesizable
Verilog

Existing Calyx Pipeline

Figure 5.2: New compilation flow. Static operators are optimized (§5.4) and com-
piled (§5.3) to pure Calyx abstractions.

a. Input Design b. Collapsed Design d. Fully Dynamic Designc. Instantiated FSMs

static<1> group do_add {
 add.left = %[0:1] ? a;
 add.right = %[0:1] ? b;
}
static<3> group do_mult {
 mul.left = %[0:3] ? add.out;
 mul.right = c;
}

control { seq {
 static seq {
 do_add;
 do_mult;
 }
 do_div; }}

group comp_seq { … }
group wrap {
 comp_seq[go] = 1;
 // assert sig to completion
 sig.in = !f.out & !sig.out ? 1;
 // wrapper done condition
 wrap[done] = !f.out & sig.out ? 1;
}
// reset signal to low to allow
// fsm-signal pair reuse
sig.in = !f.out & sig.out ? 0;

control { seq {
 wrap; do_div
}}

static<4> group comp_seq {
 add.left = %[0:1] ? a;
 add.right = %[0:1]? b;
 // update timing guards
 mul.left = %[1:4] ? mul.out;
 mul.right = %[1:4]? c;
}

control {
 seq {
 comp_seq;
 do_div;
 }
}

static<4> group comp_seq {
 add.left = 0 ≤ f.out < 1 ? a;
 add.right = 0 ≤ f.out < 1 ? b;
 mul.left = 1 ≤ f.out < 4 ? mul.out;
 mul.right = 1 ≤ f.out < 4 ? c;
 // increment counter
 f.in = f.out != 3 ? f.out + 1 : 0;
}

control {
 seq {
 comp_seq;
 do_div;
}}

§4.1 §4.2 §4.3

Figure 5.3: Compilation flow for static abstractions. Static groups and control are
inlined (§5.3.1) and the relative timing guards are reified using counters (§5.3.2).
Dynamic control operators interface with compiled code using wrapper groups
(§5.3.3).

provide more optimization opportunities.

5.3 Compilation

Figure 5.2 shows the new compilation flow. After optimizations (§5.4), we translate

static constructs to dynamic ones and compile them using the standard Calyx

compilation flow (§4.5).

Compilation has to be reason about interfaces for static code, dynamic code,

and invocations that cross the static–dynamic boundary. For example, in a con-

Abbr. Caller Callee Calling Convention
D → D Dynamic Dynamic Calyx [116]
S → S Static Static See §5.3.1
D → S Dynamic Static See §5.3.3
S → D Static Dynamic Not supported

Table 5.1: Interfaces between types of control.

92

trol statement like seq { a; b; }, both the parent (the seq) and the children (a

and b) could use either static or dynamic control. Table 5.1 lists the four possible

cases, denoted Ip → Ic where the parent and child interfaces I are static (S) or

dynamic (D). The all-dynamic case, D → D, is the Calyx baseline. The all-static

case, S → S, works by counting cycles (§5.3.1). For D → S, the compiler adds a

dynamic wrapper around the static child (§5.3.3). S → D is disallowed and results

in a compile-time error: if the child takes an unknown amount of time, it is im-

possible to give the parent a static latency bound. Given the prohibition against

S → D composition, we can think of any Calyx program as a dynamic control

program with interspersed static islands [34, 35].

Compilation starts by collapsing static islands into static groups (§5.3.1) and

then generating FSM logic to implement relative timing guards (§5.3.2). Finally,

it wraps static islands for use in their dynamic context (§5.3.3).

5.3.1 Collapsing Control

Collapsing is the process of converting a static control statement into a single group.

Collapsing preserves latency: it converts a static control statement with latency n

into a static group with latency n. Figures 5.3a–b provides an example of how

Calyx converts a static seq. The new group contains all the assignments from

the old groups used in the statement (do_add and do_mult in the example), with

their timing guards updated to implement the statement’s timing.

The compiler collapses each static island recursively in a bottom-up order: to

compile any statement, we first collapse all its children.

93

Preprocessing Before collapsing, we preprocess assignments to add timing guards

where they are missing: for example, the assignment mul.right = c in Figure 5.3a

is normalized to mul.right = %[0:3] ? c. In general, each input assignment has

this form:

dst = guard ? src;

where missing guards are assumed to be 1. The preprocessing step rewrites this

assignment into:

dst = guard & %[0:|g|] ? src;

where |g| is the group’s latency. (A separate pass simplifies redundant guards: for

example, the guard [0:10] & [0:2] can be simplified to [0:2].)

Parallel composition With all timing guards explicit and the children already

collapsed, compiling static par is simple: we merge the assignments from the

children into a single static group. The new group’s latency is the maximum latency

among the children. For example, we compile:

static<1> group A { r1.in = 1; r1.write_en = 1; }
static<2> group B { r2.in = 4; r2.write_en = 1; }
control { static par { A; B; } }

into:

static<2> group comp_par {
r1.in = %[0:1] ? 1; r1.write_en = %[0:1] ? 1;
r2.in = %[0:2] ? 4; r2.write_en = %[0:2] ? 1;

}
control { comp_par; }

In general, given some static par:

static par {c1; c2; ...; cn;}

We first recursively collapse each child ci into a group gi, resulting in:

static par {g1; g2; ...; gn;}

94

Let Ai denote the set of assignments contained in group gi. We define a new

static group comp_par that contains assignments
∪n

i=1 Ai and has latency maxn
1 |ci|.

Finally, we return comp_par as the result of the collapsing procedure.

Sequential composition To compile static seq, we merge assignments from

child groups while “shifting” their timing guards. After recursively compiling the

statement’s children, the static seq has this form:

static seq {g1; g2; ...; gn;}

Let Ai again be the set of assignments in group gi. We rewrite each timing guard

%[a:b] in each group gi to %[di + a:di + b] where di =
∑i−1

j=1 |cj|, i.e., the relative

start time for the group.

We then combine the time-shifted assignments. If A′
i denotes the modified

assignments, we construct a new static group comp_seq containing assignments∪n
i=1 A

′
i and with latency

∑n
1 |ci|. comp_seq is the result of collapsing this state-

ment.

For example:

control { static seq { A; B; } }

compiles (where A and B are as above) into:

static<3> comp_seq {
r1.in = %[0:1] ? 1; r1.write_en = %[0:1] ? 1;
r2.in = %[1:3] ? 4; r2.write_en = %[1:3] ? 1;

}
control { comp_seq; }

Conditional Semantically, static if only checks its condition port once: it must

ignore any changes to the port while either branch executes. We honor this while

compiling:

95

static if cond {ct} else {cf}

by stashing cond’s value in a special register on the first cycle, and leaving the

register’s value unchanged thereafter. We generate logic to select between ct and cf

using cond directly during the first cycle, and the special register for the remaining

cycles.

Specifically, let Ac denote these assignments:

cond_reg.in = %0 ? cond;
cond_reg.write_en = %0 ? 1;
cond_wire = %0 ? cond : cond_reg.out;

We generate cond_reg and cond_wire as a one-bit register and wire, respectively.

The intuition is that cond is used directly on the 0th cycle and stored in cond_reg

on the remaining cycles.

Next, we recursively collapse each child ct and cf into groups gt and gf , resulting

in:

static if cond {gt} else {gf}

Let At and Af denote the set of assignments contained in group gt and gf , respec-

tively. We then modify the assignments in At. For each assignment dst = guard

? src in At, we rewrite each guard to be guard & cond_wire.out. Let A′
t denote

this modified set of assignments. We modify Af similarly, using the negation !

cond_wire.out in the guard, to produce A′
f .

Finally, we define a new static group comp_if that contains assignments A′
t ∪

A′
f ∪ Ac and has latency max(|c1|, |c2|) as the result of the collapsing procedure.

Iteration To implement static repeat n { g }, the collapsed body group g

must run n times. Activating a static group in entails asserting its go signal for the

96

group’s entire latency. We can therefore compile the loop into a group that asserts

g’s go signal for n× |g| cycles:

static<n× |g|> repeat_group { g[go] = 1; }

In this case, the body group g remains alongside the new repeat_group. The body

group’s FSM (see §5.3.2) is responsible for resetting itself every |g| cycles. This is

the one control structure in which not all the assignments collapsed into a single

group.

5.3.2 FSM Instantiation

Figures 5.3b–c illustrate the next compilation step: eliminating static timing guards

(§5.1.1). For a static group with latency n, this pass generates a finite state machine

(FSM) counter that counts from 0 to n − 1; it automatically resets back to 0

immediately after hitting n − 1. We translate each timing guard %[j:k] into the

guard j ≤ f < k where f is the counter.

Resetting the counter from n − 1 to 0 lets static groups re-execute immedi-

ately after finishing. Compiled repeat and while loops, for example, can chain

invocations of static bodies without wasting a cycle between each iteration.

While FSM instantiation would work the same on the original program, it is

more efficient to run it after collapsing control. Generating fewer static groups

yields fewer FSM registers and incrementers.

97

5.3.3 Wrapper Insertion

Figures 5.3c–d illustrate the final compilation step: converting each collapsed,

timing-guard-free static group (5.3c) into a dynamic group (5.3d).

We generate a dynamic wrapper group for every static group that has a dynamic

parent. Like any dynamic group, the wrapper exposes two 1-bit signals, go and done

. When activated with go, the wrapper in turn actives the go signal of the static

group. To generate the done signal, the wrapper uses a 1-bit signal sig to detect if

a static island’s FSM has run once. When the FSM is 0 and sig is high, we know

that the FSM has reset back to 0: the wrapper asserts done.

Special case: while with static body. The wrapper strategy works in the

general case, but when the dynamic parent is a while loop, the compiled code

“wastes” one cycle per iteration to check the loop condition. This strategy incurs

a relative overhead of 1/b when the body takes b cycles, which is bad for short

bodies and large trip counts. This special case is common because it lets programs

build long-running computations from compact hardware operations, so we handle

it differently to eliminate the overhead.

To compile while c { g } where g is static, we generate a wrapper for the entire

while loop instead of a wrapper for g alone. Each time the FSM returns to the

initial state, the wrapper concurrently checks the condition port and asserts done

if the condition is false. This is another application of refinement: Calyx’s while

operator admits multiple possible cycle-level timing behaviors, and we generate a

specific one to meet our objectives.

98

5.4 Optimizations

We design a pass to opportunistically convert dynamic code to static code along

with new time-sensitive static optimizations.

5.4.1 Static Inference and Promotion

A frontend might choose to generate dynamic Calyx code simply out of conve-

nience: the computation only uses latency-sensitive operations, but it is easier to

compositionally generate dynamic programs. Automatically promoting such code

to use static interfaces can save time and resources for dynamic signalling—but

it is not always profitable. We decouple the detection of promotion opportunities

from the decision to promote any specific subprogram into two passes. Inference,

detects when dynamic groups and control have a static latency, and promotion,

converts dynamic code to static code when it appears profitable. Inference records

information without affecting the program’s semantics, while promotion refines the

program’s semantics. We infer freely but promote cautiously.

Inferring static latencies We use an existing Calyx pass called infer-static

-timing pass to infer latencies for both groups and control programs. It infers a

group’s latency by analyzing its uses of its go and done. Suppose we have:

group g {
reg.in = 10; // reg is a register (latency 1)
reg.write_en = 1;
g[done] = reg.done;

}

The pass observes that (1) reg.write_en must be asserted unconditionally, (2)

the group’s done flag must be tied to reg.done, and (3) the register component

99

definition declares a latency of 1. Calyx therefore attaches a @promote(1) attribute

(§4.3.5) to group g: the group will take exactly one cycle to run.

In general, for any cell c, three conditions must hold in order for Calyx to infer

its latency: (1) c’s go port or equivalent (e.g., write_en for registers)1 is asserted

unconditionally (2) the group’s done flag is tied to c.done, and (3) Calyx must be

able to determine a constant latency n for c: this information either comes from

Calyx primitives with a constant latency, which are hard-coded to provide their

latency information, or user-defined components for which Calyx has inferred their

latency. If these conditions hold, then Calyx will infer the latency of the group to

be n.

For control operators, e.g., seq, inference works bottom-up. If all of a seq’s

children have @promote annotations, the seq gets a @promote(n) annotation where

n is the sum of the latencies of its children.

Promoting code from dynamic to static We can promote groups and control

based on inferred @promote annotations. For example, after inferring the @promote

(1) annotation for the group g, we can promote it to:

static<1> group g { reg.in = 10; reg.write_en = 1; }

While static control has lower control overhead and enables downstream optimiza-

tions, it may incur some costs as well: we introduce promotion heuristics to balance

these costs. Each static island requires one wrapper interface and one counter regis-

ter. This cost is constant for each island, while the benefit of simpler static control

scales with the code size of the island. Therefore, the compiler introduces a thresh-
1To determine what the “equivalent” of the go port is for a given component, there is a @go

attribute that can be attached to ports in the signatures of Calyx components. For example,
in the Calyx primitive library, there is a @go attribute attached to the write_en port in the
signature of std_reg.

100

B
(10 cycles)

A
(1 cycle)

D
(10 cycles)

C
(1 cycle)

(a) Dependency graph.

wires {
// Dummy delay groups
static<1> group delay_1 {}
static<10> group delay_10 {}

}
static par {

A; B;
static seq { delay_10; C; };
static seq { delay_1; D; };

}

(b) Compacted schedule.

Figure 5.4: Schedule compaction uses data dependencies to generate an as-soon-
as-possible schedule.

old parameter that only promotes static islands above a certain code size, in terms

of the number of groups and conditional ports.

5.4.2 Schedule Compaction

We design a new schedule compaction optimization to maximize parallelism while

respecting data dependencies. For a dynamic program that can be promoted to

static, we have a choice in how to implement its static schedule.2 We can choose a

specific static schedule to implement the original dynamic schedule that respects

the original data dependencies and performs as many computations in parallel as

possible, produces dependencies as soon as possible (ASAP scheduling), or as late

as possible (ALAP scheduling).

Schedule compaction is only feasible in a unified compiler. In a dynamic IL,

the compiler lacks latency information altogether. In a static IL, the compiler has

latency information but is barred from rescheduling code, which could violate tim-
2A program marked static by a frontend cannot use this optimization since the compiler is

required to implement that program with a specific static schedule.

101

ing properties that the program relies on. Traditional C-based high-level synthesis

(HLS) compilers accomplish similar scheduling optimizations, but by translating

between two vastly different representations: from untimed C to a fully static HDL.

A unified IL, in contrast, can perform this optimization within a single abstraction

by exploiting the interaction between static and dynamic code.

After static inference, dynamic control programs are marked with the @promote

(n) attribute. The compaction pass targets such control programs for compaction.

Consider the following seq:

promote(22) seq A; B; C; D;

where Figure 5.4a shows the groups’ latencies and data dependencies. If we only

perform promotion, it will take 1 + 10 + 1 + 10 = 22 cycles.

The schedule compaction pass reschedules the group executions to start as soon

as their dependencies have finished. Specifically, A and B start at cycle 0 because

they have no dependencies; C and D start on cycle 10 and 1 respectively: the first

cycle after their dependencies have finished. This compacted schedule takes only

11 cycles.

General procedure In general, compaction works by first calculating a com-

pacted schedule and then constructing a control program to implement this sched-

ule. It first calculates all potential dependencies between children in a seq. These

dependencies include read-after-write, write-after-write, or write-after-read depen-

dencies. Dependency analysis is conservative: for example, any group which may

read or write from a cell counts as a read or write respectively during dependency

calculations. The pass then builds a dependency graph and topologically sorts it

to produce a list of children L. It then iterates through L to produce an as-soon-

102

as-possible (ASAP) schedule: for each child ci ∈ L, it assign a start time s(ci)

according to the following equation: s(ci) = maxdi∈Di
(s(di) + |di|) where Di repre-

sents the set of children that ci depends on. In other words, it assigns the earliest

possible start time for ci that still honors its dependencies.

Next, it reconstructs a control program to implement this schedule. It emits a

static par with one thread per child. For each child ci, it creates an empty static

group e with latency s(ci) and then creates

static seq {e; ci;}

Each resulting static seq is a thread in the static par. An example is shown in

Figure 5.4b. Since all delay_n groups are removed during the collapsing step of

compilation (§5.3.1), they incur no overhead.

5.4.3 Latency-Aware Component Sharing

Calyx’s component sharing pass (§4.6.2) computes the live-ranges of components

and uses that information to optimize resource usage. We extend the sharing pass

to work with both static and dynamic code. Because of Calyx’s unified and com-

positional representation for static and dynamic programs, the new pass can share

cells across the static–dynamic boundary. This is infeasible in ILs that separate

static and dynamic operators [33, 163].

Our implementation also improves over sharing in Calyx when it can exploit

cycle-level timing in static code.

par {
seq {

write_a; // lat = 1
read_a; // lat = 1
do_mult0; // lat = 3

103

}
seq {

do_mult1; // lat = 3
write_b; // lat = 1
read_b; // lat = 1

}
}

Consider the following program that executes two threads in parallel that use

registers a and b respectively. The first threads writes to and reads from register a

in the first two cycles while the second thread writes and reads from register b in

the last two cycles. However, because Calyx’s par operator does not provide any

guarantees on how the threads are scheduled to execute (§4.3.4), the pass has to

conservatively assume that the live ranges of a and b extend to the end of the par

block.

With our new latency-sensitive abstractions, a static par, will guarantee pre-

cisely when each group executes allowing the pass to precisely compute the live

ranges. Using this information, our new pass can automatically share registers a

and b.

5.5 Discussion

We overview the static extension to Calyx which allow for latency-sensitive reason-

ing of circuits. Using the insight that latency-sensitive schedules are refinements

of latency-insensitive ones, our extended IL retains the compositional and mod-

ular nature of Calyx. We demonstrated that (1) the extension can be used to

precisely encode cycle-accurate circuits (§5.2), (2) they can be efficiently compiled

to preserve their timing guarantees to existing abstractions in Calyx, and (3) they

improve the optimization power of the compiler (§5.4). Chapter 6 studies the com-

104

plete Calyx system through case studies and how Calyx has been used in the wild.

105

CHAPTER 6

EVALUATING CALYX

Chapters 4 and 5 overview the design of Calyx. This chapter discusses the

implementation of the Calyx compiler, how it is used to design frontends, and how

its optimizations improve the performance of generated programs.

6.1 Implementation of the Calyx Infrastructure

The Calyx infrastructure is implemented using Rust, Python, and C++. The core

compiler infrastructure is implemented in 33,000 lines of code and structured as

several packages:

• calyx-frontend: Parses the Calyx intermediate language (IL) textual format

and converts into an abstract syntax tree (AST).

• calyx-ir: The core data structures implementing the intermediate represen-

tation (IR).

• calyx-opt: Analyses and passes used by the compiler. Each pass consumes

and generates a valid Calyx program.

• calyx-backed: SystemVerilog and FIRRTL [80] backends for the Calyx pro-

grams.

The Calyx ecosystem also implements various other tools to simplify compilation

from frontends, simulation, debugging [17], and execution on field programmable

gate arrays (FPGAs) amounting to a total of 80,000 lines of code.

106

Row 1
Stream

Row 0
Stream

Bu!er

PO Controller

Bu!er

O
ut

pu
t

M
em

or
y

O
ut

pu
t

M
em

or
yDynamic

Post Op

Dynamic
Post Op

Systolic Array Component

PE PE

PE PE

L1

L0

T0 T1

Figure 6.1: Our 2 × 2 systolic array with a dynamic post op. The buffers in the
post op controller are not necessary for static post ops. Green is static and orange
is dynamic. Input memories (L0, L1, T0, T1) may have non-fixed length.

CIRCT Calyx has been adopted as a part of the LLVM CIRCT infrastruc-

ture [153] and is implemented as a separate MLIR dialect [97]. This implemen-

tation of Calyx is capable of generating the native Calyx textual format which can

be passed to the native, Rust-based Calyx compiler. The native compiler is capable

of produce an MLIR complaint textual representation allowing the two systems to

interoperate.

6.2 Systolic Arrays

Sections 4.4 and 5.2 overviewed the implementation of simple systolic arrays [92]

in Calyx. In this section, we explore a complete design of a systolic array generator

in Calyx. The generator is parameterized by the contraction dimension of the

resulting matrix and implements an output-stationary dataflow. For example, if

matrices of size A × N and N × B were multiplied, the generated matrix would

have size A×B. Furthermore, our generator implements and connects various post

107

operations that can be performed on the resulting matrix.

6.2.1 Design Considerations

We describe various requirements of systolic arrays generated by our frontend:

• Architecture: Our systolic arrays should support output-stationary dataflow

which stores which allow both statically-known and runtime specified size of

the contraction dimension.

• Expressiveness: The architecture should accommodate both latency-sensitive

and latency-insensitive post operators.

• Efficiency: The systolic array should efficiently pipeline the computation

using the fully-pipelined processing elements (PEs).

These requirements make the design of the compiler frontend challenging. For

example, to accommodate both latency-sensitive and latency-insensitive compo-

nents, a compiler that targets register transfer level (RTL) language would have

to carefully track the information and generate control logic that orchestrates the

computation correctly and leverages the timing information for efficiency. On the

other hand, a compiler that targets an high-level synthesis (HLS) tool will need

to carefully structure the C++ code to ensure that a systolic array architecture is

generated. Finally, if using a custom intermediate language (IL), systems that only

expose static interfaces [103] or dynamic interfaces [83] will limit expressiveness or

efficiency respectively.

A Calyx-based frontend works around these problems. First, Calyx’s control op-

erators make it easy to orchestrate the systolic computations. Second, the hardware-

108

like structural operators enable precise specification of the architectural compo-

nents. Finally, Calyx’s unified representation for static and dynamic interfaces

enables us to easily support static and dynamic PEs and post operations.

6.2.2 Implementation

Figure 6.1 overviews the architecture. The systolic array fabric is instantiated using

pipelined processing elements and connected to the post-operations (POs) using a

controller. The POs can be either static or dynamic and instantiated for each row

in the output matrix. If the POS is dynamic, the controller instantiates buffers to

queue the output stream but elides them for static POs. The interface between the

systolic array and PO is pipelined: a row’s PO starts its computation as soon as an

output is available. Most of the code—the systolic array, the controller, the PEs—

is reused regardless of the PO’s interface. This is because Calyx allows programs

to freely intermix static and dynamic abstractions.

Pipelined processing elements Processing elements are implemented as com-

ponents that conform to the following interface:

static<1> component pe(go: 1, top: 32, left: 32) -> (out: 32) { ... }

The requirement that the component is marked static<1> ensures that it can

accept a new input every clock cycle. This also allows the systolic array to uncon-

ditionally move data every cycle and guarantee the right value will be read.

Flexible iteration logic While static interfaces allow for efficient, pipelined exe-

cution, they can limit computational flexibility. For example, an output-stationary

109

matrix-multiply systolic array should be able to multiply matrices of sizes i×k and

k × j for any value of k. However, this requires dynamic control flow: the compu-

tation needs to repeat based on the run-time value k. Calyx abstractions support

this with ease: we simply use a while loop to execute the systolic array’s logic k

times. Because the control logic to execute the processing elements and move the

data are completely static, Calyx’s special handling of loops (§5.3.3) executes the

body every cycle.

Supporting fused post operations Machine learning frameworks [9, 30, 135]

fuse matrix multiplication with element-wise post operations, such as non-linearities,

to avoid writing the intermediate matrix back to memory. These post operations

can be either static or dynamic. Our goal is to decouple the implementation of post

operations from the systolic array: to keep the code generation modular without

sacrificing efficient interfaces. We implement two post operators (POs): (1) a static

ReLU operation, x > 0 ? x : 0, and (2) a dynamic leaky ReLU [102] operation,

x > 0 ? x : 0.01*x. The latter is dynamic because the true branch can directly

forward the output while the false branch requires a multiplication.

6.2.3 Evaluation

Our evaluation of the systolic arrays seeks to answer the following questions:

• How do static abstractions improve the systolic array?

• How is the cost of implementing run-time-configurable contraction dimension

for systolic arrays?

110

4x4 8x8 16x16
0

10

20

30

40

50

60

70

C
yc

le
 C

ou
nt

Design Type
ReLU (static implementation)
ReLU (dynamic implementation)

(a) Cycle counts.
4x4 8x8 16x16

0K

5K

10K

15K

20K

25K

30K

35K

LU
T

U
sa

ge

(b) LUT usage.
4x4 8x8 16x16

0K

0K

1K

2K

2K

2K

3K

4K

R
eg

is
te

r U
sa

ge

(c) Register usage.

Figure 6.2: Performance and FPGA resource utilization of two implementations
of a fused matrix-multiply–ReLU kernel on Calyx-compiled systolic arrays. We
compare static and dynamic interfaces for the ReLU unit.

• Do cross-boundary optimizations let Calyx eliminate overheads when the

systolic array is coupled with a static post operation?

Effect of pipelining For the 16 × 16 design, the pipelined implementation in

Calyx achieves a max frequency of 270MHz and performs the computation in 52

cycles in comparison to the 250MHz and 284 cycles taken by a Calyx design that

does not use static abstractions. The latency improvement is from the pipelined

execution and the frequency improvement from simplified control logic.

Configurable matrix dimensions We compare systolic arrays with flexible

and fixed matrix size support. The flexible design takes 1 extra cycle to finish, uses

8% more look-up tables (LUTs) (for logic to check the loop iteration bound), and

uses the same number of registers. The flexible design pays some overhead to gain

dynamic functionality, while the fixed design is fully static, thereby eliminating

dynamic overhead: Calyx expresses both with minimal code changes.

Overhead of dynamic post operations We perform a synthetic experiment

to quantify overhead of a dynamic interface between the systolic array and the PO:

111

we use the simple ReLU post operation in its default, static form and compare it

against a version that artificially wraps it in a dynamic interface. Since the com-

putation is the same, the only difference is the interface. Figures 6.2a–6.2c report

the cycle counts, LUTs, and register usage of the resulting designs. In addition to a

higher cycle count, the dynamic implementation also has higher LUT and register

usage, stemming from the extra control logic and buffers respectively.

6.3 Dahlia Compiler

The Dahlia compiler (§§ 4.4.2 and 5.2.2) transforms Dahlia programs (§3) to Calyx.

We compare the Calyx-generated register transfer level (RTL) against the original

Dahlia compiler which emits C++ and relies on Vitis HLS to generate hardware

designs. We implement all 19 kernels from the linear algebra category of the Poly-

Bench [3] benchmark suite and, for the 11 benchmarks Dahlia’s type system allows

it, unroll the loops to unlock parallelism. We synthesize and place-and-route each

design using Vivado and targeting the Zynq UltraScale+ board with a 7ns target

frequency to produce resource numbers. We produce cycle counts by simulating

each design using Verilator [155].

Comparison against HLS We collected cycles counts (Figure 6.3a) and LUT

usage (Figure 6.3b) for each benchmark with all optimizations turned on and

normalized them to the corresponding Vitis HLS implementation. For the unrolled

designs, we normalize against the corresponding unrolled HLS designs. Since DSP

and BRAM usage is almost identical for all benchmarks, we elide them.

On average, the Calyx generated designs are 3.1× slower than the designs

112

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk

b
cg ck

y
db

n lu lc
p

sy
m ts
v

tr
m

8

4

2

1

0.5

0.25

S
im

ul
at

io
n

C
yc

le
S

lo
w

do
w

n
Geo Mean

Not Unrolled

Unrolled

(a) Cycle slowdown of Calyx designs compared to Vitis HLS. Designs below the y-axis
are slower.

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk

b
cg ck

y
db

n lu lc
p

sy
m ts
v

tr
m

8

4

2

1

0.5

0.25

L
U

T
In

cr
ea

se
F

ac
to

r

Geo Mean

(b) LUT increase of Calyx designs over Vitis HLS. Designs below the y-axis are larger.

Figure 6.3: Resource and cycle count comparison for Dahlia-generated Calyx de-
signs and HLS designs for PolyBench benchmarks. Missing unrolled bars indicate
that the benchmark was not unrollable in Dahlia.

generated by Vitis HLS and use 1.2× more LUTs. For the unrolled designs, Calyx

comes closer to HLS execution time, being 2.3× slower while taking 2.2× more

LUTs. Vitis HLS is a heavily optimized toolchain that incorporates state-of-the-

art optimizations and is designed to perform well on the kinds of nested loop nests

we evaluated.

113

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk

b
cg ck

y
db

n lu lc
p

sy
m ts
v

tr
m

1.33

1

0.8

L
U

T
In

cr
ea

se
fa

ct
or

Resource Sharing

Register Sharing

Both Enabled

(a) LUT increase from resource sharing and register sharing.

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk

b
cg ck

y
db

n lu lc
p

sy
m ts
v

tr
m

1

1.25

1.5

R
eg

is
te

r
D

ec
re

as
e

F
ac

to
r

Geo Mean

(b) Register decrease from the register sharing optimization.

Figure 6.4: Effects of optimization passes. All graphs use logarithmic scales.

6.4 Effect of Optimizations

We implement several optimization passes to share resources and improve perfor-

mance of Calyx designs and study their impact.

6.4.1 Resource Sharing

To demonstrate Calyx’s ability to express control-flow based optimizations, we

wrote a resource sharing pass (§4.6.1) and a register sharing pass (§4.6.2). We

114

perform an ablation study to characterize their effects on the final designs.

Figure 6.4a reports the resource utilization of PolyBench benchmarks in three

configurations: (1) resource sharing enabled, (2) register sharing enabled, and (3)

both resource sharing and register sharing turned on. We normalize the resource

counts against baselines with both passes disabled.

While both optimization passes find opportunities to share hardware compo-

nents, there is not a uniform drop in the LUT usage. On average, the resource

sharing pass increases LUT usage by 3% and the register sharing pass increases

LUT usage by 11%. Sharing hardware components causes additional multiplexers

to be instantiated which makes the resource usage worse in some cases.

Figure 6.4b shows the effects of the register sharing pass on the number of

registers used in the designs. On average, the pass reduces register usage by 12%

and finds register sharing opportunities in every benchmark. Registers, compared

to multiplexers, are more expensive in ASIC processes which represents another

opportunity for heuristics in a future version of the Calyx compiler.

6.4.2 Impact of Static Abstractions

Calyx’s static abstractions allow programs to be optimized and rescheduled based

on resource and performance requirements. We extend the resource sharing passes

to take advantage of the implicit synchronization information present in static pro-

grams (§5.4.3). Additionally, we study the impact of the promotion and compaction

optimizations enabled by static abstractions (§5.4.2).

115

Configurations Since the resource sharing and compaction optimizations inter-

fere with each other, we generate several configurations and vary the order of the

optimizations.

1. SH: Static promotion, then cell sharing.

2. SC: Static promotion, then schedule compaction.

3. SH→SC: Static promotion, sharing, then compaction.

4. SC→SH: Static promotion, compaction, then sharing.

We compare Polybench designs writte using Calyx’s static abstractions (re-

ferred to as ‘Piezo’ in the experiments) as well as vanilla Calyx and Vitis HLS.

The Vitis HLS implementations provide an external baseline while the vanilla Ca-

lyx designs serve to quantify the impact of static optimizations. Our experiments

to explore the threshold parameter for promotion (§5.4.1): while they unsurpris-

ingly yield nonuniform trade-offs between area and latency, we select a default

parameter of two for the static island size threshold.

Comparison to Calyx and Vitis HLS

We use Piezo’s SC→SH configuration to compare against Calyx and Vitis; Fig-

ure 6.5 shows results relative to Vitis (for each graph, lower is worse). Piezo outper-

forms Calyx on both latency and LUTs: comparing geometric means, Piezo takes

0.82× as many cycles as Calyx and takes 0.52× as many LUTs. Schedule com-

paction can explain the faster designs, while using simpler static interfaces reduces

LUT usage.

116

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt s2
k sk bc
g

ck
y

db
n lu lcp sy

m ts
v

trm

8

4

2

1

0.5

0.25

Si
m

ul
at

io
n

Cy
cle

 S
lo

wd
ow

n

Geo Mean Calyx
Geo Mean Piezo

Calyx
Piezo

(a) Cycle counts.
2m

m
3m

m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk bc
g

ck
y

db
n lu lc
p

sy
m ts
v

trm

8

4

2

1

0.5

0.25

0.125

LU
T

In
cr

ea
se

 F
ac

to
r

Geo Mean Calyx

Geo Mean Piezo

(b) LUT Usage.

Figure 6.5: Cycle count and LUT usage for the 19 linear algebra Polybench bench-
marks, relative to Vitis HLS (lower is worse). For cycle counts: Piezo takes a
geometric mean of 0.82× compared to Calyx and 2.54× compared to Vitis. For
LUTs: Piezo takes 0.52× and 0.65× compared to Calyx and Vitis, respectively.

Compared to Vitis HLS, Piezo generates smaller but slower designs: the bench-

marks take 0.65× the LUTs but 2.54× as many clock cycles. The primary reason

for the difference is that Vitis HLS performs automatic pipelining search while the

Dahlia compiler does not. (Piezo can express pipelined designs, but the frontend

must decide the stage breakdown.) We anticipate that a frontend that aggressively

pipelines could further close the gap with commercial HLS tools.

117

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk bc
g

ck
y

db
n lu lc
p

sy
m ts
v

trm

2

1.33

1

0.8

S
im

ul
at

io
n

C
yc

le
 S

lo
w

do
w

n

Geo Mean SH

Geo Mean SH→SC

SC
SH
SH→SC

(a) Cycle counts.

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk bc
g

ck
y

db
n lu lc
p

sy
m ts
v

trm

2

1.33

1

0.8

0.667

LU
T

In
cr

ea
se

 F
ac

to
r

Geo Mean SH
Geo Mean SH→SC

Geo Mean SC

(b) LUT Usage.

2m
m

3m
m at
a

dt
g

gm
m

gm
v

ge
v

gm
t

m
vt

s2
k sk bc
g

ck
y

db
n lu lc
p

sy
m ts
v

trm

2

1.33

1

0.8

0.667

R
eg

is
te

r I
nc

re
as

e
Fa

ct
or

Geo Mean SH→SC and SH

Geo Mean SC

(c) Register Usage.

Figure 6.6: Performance of Piezo designs compiled with various optimization or-
derings (lower is worse). Results are relative to SC→SH. The cycle counts are
identical across the configurations SC and SC→SH, which is why no blue bars
appear in (a).

Effects of Optimizations and Phase Ordering

We first explain the effect of Piezo’s various optimizations by comparing SH and

SC. Then, we examine SH→SC and SC→SH to see the impact of the ordering

of these optimizations. Figure 6.6 shows the results for the various configurations,

relative to the SC→SH configuration, which is the configuration used in §6.4.2.

Cycle counts Schedule compaction (SC) provides a consistent performance im-

provement: it yields designs that take a geometric mean of 0.85× the cycles com-

pared to non-compacted designs (SH).

118

LUT and register usage Designs that share hardware resources (SH) use

0.91× the LUTs and 0.53× the registers, compared to SC designs.

Schedule compaction and cell sharing are partially in conflict: the former adds

parallelism, while the latter exploits non-parallel code to share resources. They

embody a fundamental trade-off between performance and area. We measure their

interaction in either order:

Cycle counts SC→SH performs identically to SC alone. The opposite ordering,

SH→SC, is slightly slower, taking 1.12× the number of cycles, but still faster than

SH (1.17×). Sharing impedes some, but not all, opportunities for compaction.

LUT usage SH→SC, SC→SH, and SH all perform similarly, while SC slightly

increases LUT usage (1.04×). However, the effects across benchmarks are nonuni-

form, and various combinations of optimizations can sometimes outperform other

combinations depending on the benchmark.

Register usage Running sharing first (SH→SC) achieves identical register re-

duction to SH alone: they both use 0.9× the registers compared to SC→SH.

However, SC→SH is still significantly better than SC alone, which increases reg-

ister usage by a factor of 1.68×. Running SC first only opportunistically adds

parallelism; the designs still have some fundamental sequential behavior that al-

lows sharing.

119

CHAPTER 7

MODULAR HARDWARE DESIGN WITH TIMELINE TYPES

Dahlia (§3) and Calyx (§§ 4–6) demonstrate the possibilities of high-level pro-

gramming models for hardware design. However, such programming models excel

by specializing to particular domains and generating particular domain-specific

architectures. While some work has explored the design of general-purpose archi-

tectures using such tools [104], a vast majority of general-purpose hardware design

is still done using hardware description languages (HDLs). Automatic hardware

generation (AHG) tools are more widely being used to design more complex data-

path designs but HDLs are still used for carefully designing control logic and gluing

together automatically generated hardware blocks.

However, existing HDLs complicate efficient modular design. Unlike software,

hardware designs correspond to physical circuits and inherit constraints from them.

Timing constraints—which cycle a signal arrives, when an input is read—and struc-

tural constraints—how often a multiplier accepts new inputs—are fundamental to

hardware interfaces. Existing HDLs do not provide a way to encode these con-

straints; a user must read documentation, build scripts, or in the worst case, a

module’s implementation to understand how to use it. These problems are even

more challenging to deal with in the presence of AHG tools which automatically

generate and change the cycle-level timing behavior of circuits. Unlike Calyx, ab-

stracting away timing details is not an option; timing details are critical for efficient

composition and an HDL that abstracts away such details will impose unacceptable

overheads.

We present Filament, a language for modular hardware design which uses a

type system to encode and enforce timing constraints. This chapter overviews the

120

module Add(a: 32, b: 32) -> (o: 32);
module Mul(a: 32, b: 32) -> (o: 32);
module Mux(sel: 1, a: 32, b: 32) -> (o: 32);
module ALU(op: 1, l: 32, r: 32) -> (o: 32) {
Mul M(l, r); Add A(l, r);
Mux Mx(op, A.out, M.out); o = Mx.out; }

(a) HDL implementation of ALU

clk

l 10

r 20

op 0

out 30

(b) Waveform generated for addition.

clk

l 10

r 20

op 1

out 200

(c) Waveform generated for multiplication.

Figure 7.1: ALU implementation and waveforms generated when executing addi-
tion and multiplication.

basic design of Filament and how it enables compositional design of individual

circuits. Chapter 8 extends Filament to reason about families of circuits allow it

to correctly and efficiently compose designs generated from AHG tools. Filament

offers a new correctness-efficiency trade-off in the design of HDLs: by effectively

modeling circuit constraints within a type system, we enable correct reasoning

without overheads.

7.1 Example

We will discuss the challenges associated with compositional hardware design by

implementing a pipelined arithmetic logic unit (ALU).

7.1.1 Traditional Hardware Description Languages

121

Figure 7.1a shows the implementation of the ALU in a traditional HDL. The in-

terfaces for the modules specify the inputs and outputs along with their bitwidths.

The ALU’s circuit consists of an adder and a multiplier, which perform their com-

putations in parallel, and a multiplexer, which selects between the two outputs

using the op signal.

We will use waveform diagrams to understand the execution behavior of this

module. A waveform diagram explains the flow of signals in the circuit over time

and usually with respect to the global clock signal. Figure 7.1b shows the waveform

generated when the ALU is provided with the inputs 10 and 20 and the op code

0. Note that the output 30 is produced in the same cycle as the inputs. However,

Figure 7.1c shows what happens when we attempt to execute the multiplication

operation by setting op to 1. The timing behavior of the ALU changes—the product

is produced two cycles after the input is provided. Additionally, if the op is not

asserted for an additional cycle, the output is wrong. The problem is that an adder

is combinational—it produces its output in the same cycle as the inputs—while a

multiplier is sequential—it takes several cycles to produce its output. op is required

for an extra cycle because the multiplier output is produced later than the adder

and the multiplexer needs to select the correct output in a later cycle using the op

input.

The interfaces for ALU, the adder, and the multiplier do not capture these de-

tails. One option to sidestep this problem is to “wrap” every module in a latency-

insensitive interface, such as ready–valid handshaking. But these interfaces incur

overhead that can be prohibitive for fine-grained composition [111]. In this chap-

ter, we design a hardware description language (HDL) to specify efficient, latency-

sensitive interfaces based on clock cycles and to statically rule out misuses of these

122

interfaces.

7.1.2 Filament

Filament is an HDL that allows users to directly specify and check the timing

behavior of their modules. Each component can be parameterized by multiple

events which are used to specify its timing behavior. Our ALU implementation

has behaves unpredictably because adders and multipliers have different timing

behavior. Filament allows us to encode their timing behavior explicitly using events

which parameterize modules:

extern comp Add<T>(
@interface[T] go: 1, left: [T, T+1] 32, right: [T, T+1] 32) -> (out: [

T, T+1] 32);
extern comp Mult<T>(

@interface[T] go: 1, left: [T, T+1] 32, right: [T, T+1] 32) -> (out: [
T+2, T+3] 32);

Both components use the event T to specify their timing behavior. The adder

is combinational—it produces outputs in the same cycle as the inputs. This fact

is encoded by the availability intervals of the inputs and outputs: the inputs are

provided in the half-open interval [T, T + 1), which corresponds to the first cycle of

execution of the component, and the output is produced during the same interval.

In contrast, a multiplier is sequential—it takes two cycles to produce its output.

This is encoded by stating that the output is available in the interval [T + 2, T + 3),

two cycles after the inputs are provided in the interval [T, T + 1). In order to signal

that the event T has occurred, a user of these modules must set the interface port

go to 1, provide the inputs according to their required intervals, and read the

output when they are available. Multiplexers (not shown) are also combinational

and take all their inputs in the same cycle.

123

comp ALU<G>(
interface[G] en: 1 op: [G, G+1] 1, l: [G, G+1] 32, r: [G, G+1] 32,

) -> (o: [G+2, G+3] 32) {
A := new Add; M := new Mult; Mx := new Mux;
a0 := A<G>(l, r);
m0 := M<G>(l, r);
mux := Mux<G>(op, m0.out, a0.out);
o = mux.out; }

Like our HDL implementation, our Filament implementation of the ALU ex-

plicitly instantiates all the hardware resources it needs to use. The key difference

is how Filament expresses the use of the hardware instances through invocations.

An invocation schedules the execution of a hardware instance using a particular

set of events and provides all inputs. For example, the invocation a0 of the adder

A is scheduled using the event G. By naming uses, Filament can check the timing

behavior of the module. There is no assignment for the go port of the adder—it

is automatically inserted by the compiler using the scheduling event G. Invoca-

tions are a logical construct that are compiled away by Filament (§7.4). Similarly,

the multiplier and multiplexer are also scheduled using the event G. Instead of

using outputs from the instance, the multiplexer uses the ports on the invocations,

reflecting the output from a particular use.

7.1.3 Checking Timing Behavior

However, when we attempt to compile this program, Filament gives us the following

error:

mux := Mux<G>(op, m0.out, a0.out);
Available for [G+2, G+3) but required during [G, G+1)

The error states that the use of our multiplexer expects all of its inputs during

[G,G+ 1) while the multiplier’s output, m0.out, is available in [G+ 2, G+ 3). Fil-

ament requires that all inputs be available for at least as long as the correspond-

124

ing argument’s requirement. This was the problem in our original HDL design

(§7.1.1)—the output of the adder is available in a different cycle from the multi-

plier which results in unexpected timing behavior. Filament’s type system statically

catches this error.

The solution is to use registers to store values and make them available in future

cycles. A register’s signature captures its timing behavior—the output is available

one cycle after the input1:

comp Reg<G>(en: interface[G], in: [G, G+1] 32) -> (out: [G+1, G+2] 32)

The corrected implementation uses two registers to make the sum available in

the same cycle as the multiplier. The outputs from the first and second registers

are available in [G+ 1, G+ 2) and [G+ 2, G+ 3), respectively. We schedule the

execution of the multiplexer in cycle G + 2 when both the outputs are available.

This design is still problematic because the op is only available in [G,G+ 1) while

the multiplexer reads it in [G+ 2, G+ 3). We fix this by making op signal available

in [G,G+ 3). This results in a correct ALU implementation.

comp ALU<G>(@[G, G+3] op: 32, ...) {
a0 := A<G>(l, r); R0 := new Reg; R1 := new Reg;
r0 := R0<G>(a0.out); r1 := R1<G+1>(r0.out);
mux := Mux<G+2>(op, r1.out, m0.out); ... }

However, it is not clear when the ALU is ready to accept new inputs: should

we wait till outputs are produced or can the module process multiple inputs in

parallel?

125

1

2

3

(a) Sequential processing

1

2

3

(b) Pipelined processing

Figure 7.2: Difference between sequential and pipelined processing. A pipelined
module can process multiple inputs at the same time.

7.1.4 Pipelining

Pipelining is a common optimization that enables hardware to process multiple

inputs in parallel. A sequential module processes its inputs one at a time (Fig-

ure 7.2a), while pipelined module can overlap the processing of multiple inputs

(Figure 7.2b).

Pipelining is challenging because it requires reasoning about the interaction

between multiple, concurrent executions of the same physical resources—correctly

pipelining requires using values from the correct pipeline stage and ensuring there

are no structural hazards, i.e., there are no conflicting uses of internal components.

comp Add<T:1>(...); comp Mult<T:3>(...); comp ALU<G:1>(...)

Filament presents a concise solution: each event has an associated delay that

specifies how many cycles to wait before accepting new inputs. We can update

the signature of the adder and multiplier to reflect this. Since the adder is com-

binational, it can accept new inputs every cycle. However, the multiplier accepts

new inputs every 3 cycles. For user-level components, Filament ensures that the

delay for each event is correct, i.e., the component can be correctly pipelined. We’ll

redesign our ALU to be pipelined and accept new inputs every cycle by specifying

that the delay of G is 1. Since we know our design is not pipelined, Filament will

generate errors explaining why the design cannot be pipelined.
1This is a simplified interface for a register. Full interface provided in §7.2.6.

126

comp ALU<G:1>(
Event may retrigger every cycle

op: [G, G+3] 1, Lasts for 3 cycles

first

second

Our first problem is that the signature requires input signal op to be available for

three cycles whereas the pipeline may trigger every cycle. The waveform diagram

demonstrates the problem—the input for op from the first iteration will overlap

with the input for the second iteration. However, op is a physical port in a circuit

and can only hold one value at a time; this is a fundamental physical constraint of

hardware design. Filament requires that the delay of an event is at least as long as

the length of any availability interval that uses it; we must make op’s availability

interval 1-cycle long. We choose [G+2, G+3) since the multiplexer uses op during

this interval.

comp Mult<T: 3>(
Event may retrigger every 3 cycles
comp ALU<G: 1>(
Event may retrigger every cycle
m0 := M<G>(l, r);

Cannot safely pipeline

Next, Filament complains that while our ALU pipeline may accept new inputs

every cycle, the multiplier M can accept new inputs every 3 cycles. This is a fun-

damental limitation of the multiplier circuit we’re using; to fix it, we must use a

different multiplier. Filament catches yet another pipelining bug that arises from

composition: every subcomponent used in a pipeline must be able to process in-

puts at least as often as the pipeline itself. Fixing this will result in a correct, fully

pipelined ALU. A key goal of Filament is to ensure that changing the pipelining

behavior of a component does not create additional bugs—the pipelined ALU, like

the sequential ALU, only uses signals when they are semantically valid.

comp ALU<G: 1>(@interface[G] en: 1, @[G+2, G+3] op: 1, ...) {
A := new Add; Mx := new Mux; R0 := new Reg; R1 := new Reg;

FM := new FastMult; // delay = 1
a0 := A<G>(l, r); r0 := R0<G>(a0.out); r1 := R1<G+1>(r0.out); m0 := FM

<G>(l, r);

127

def init(left) -> (acc, q):
Initialize the

computation
def nxt(a, q, div) -> (an,

qn):
One step of the

computation
def div(l, r):

(qn, an) = init(l)
for _ in range(0, 8):

(qn, an) = nxt(an, qn, r
)

return qn

(a) Pseudocode for restoring divi-
sion.

comp Comb<G: 1>(...) -> (
out: [G, G+1] 8) {

i := new Init<G>(left);
n0 := new Nxt<G>(i.A, i.Q,

r);
...
n7 := new Nxt<G>(n6.A, n6.Q

, r);
out = n7.Q;

(b) Fully combinational divider.

comp Pipe<G: 1>(...) -> (@[G+7, G+8] q:
8) {

i := new Init<G>(left); // Instantiate
and invoke

n0 := new Nxt<G>(i.A, i.Q, r);
ra0 := new Reg<G>(n0.A);
rq0 := new Reg<G>(n0.Q);
n2 := new Nxt<G+1>(ra0.out, div, rq0.out

);
...
out = n7.Q;

(c) Pipelined divider. Instances scheduled in succes-
sive cycles.

comp Iter<G: 8>(...) -> (@[G+7, G+8] q:
8) {

I := new Init<G>(left);
N := new Nxt; RA := new Reg; RQ := new

Reg;
n0 := N<G>(i.A, i.Q, r);
ra0 := RA<G>(n0.A); rq0 := RQ<G>(n0.Q);
n1 := N<G+1>(ra0.out, rq0.out);
ra1 := RA<G+1>(n1.A); rq1 := RQ<G+1>(n1

.Q); ...
out = n7.Q;

(d) Iterative divider. Components reused over mul-
tiple cycles.

Figure 7.3: Implementations of 8-bit restoring division demonstrating area-
throughput trade-off. Filament’s type system ensures that each implementation
is correctly pipelined and introduces no resource reuse conflicts.

mux := Mux<G>(op, r1.out, m0.out); o = mux.out; }

7.1.5 Area-Throughput Trade-offs with Filament

While pipelining improves the throughput of a component, it also increases its

resource usage. For large circuits, like floating-point multipliers, it often makes

sense to reuse the same circuit over multiple clock cycles. However, circuit reuse

affects pipelining behavior: the ability of a component to start new iterations de-

pends upon how sub-components are being shared. Filament’s type system tracks

128

resource reuse and ensures that a well-typed component does not create structural

hazards for reuses components.

To demonstrate how Filament enables safe exploration of area-throughput trade-

offs, we implement three different versions of a divider using a restoring division

algorithm (Figure 7.3a). The combinational components Init and Nxt compute a

quotient (.Q) and an accumulator value (.A). For an 8-bit value, we must apply

Nxt 8 times.

Combinational divider Figure 7.3b implements a combinational divider which

computes the output in the same cycle when the inputs are provided. All Nxt

instances are scheduled using the event G which means that they’ll execute in the

same cycle. While the latency of the design is 1, it is quite inefficient because it

schedules a lot of complex logic in the same clock cycle and forces the design to

operate at a low frequency. However, combinational designs are a good starting

point to ensure that our algorithm is correct.

Pipelined divider To make our design run at a higher frequency, we can pipeline

it by scheduling each Nxt instance to execute in successive cycles. To correctly for-

ward the values, we instantiate registers to hold onto values of the quotient and the

accumulator for each Nxt component. Figure 7.3c shows the implementation: the

delay of the module remains 1, allowing it to process a new value every cycle, but

the latency is now 8 cycles unlike the combinational implementation. The pipelin-

ing also breaks up the long combinational path allowing the design to operate at

a higher frequency.

129

Iterative divider Both the combinational and pipelined inputs can process a

new input every cycle but require a large amount of hardware since they instantiate

8 instances of the Nxt component and 16 registers for the pipelined version. We can

instead use the same Nxt component and registers by implementing an iterative

design.

comp Nxt<T:1>(...)
Delay requires uses to be 1 cycle apart
s0 := N<G>(i.A, div, i.Q); First use
s1 := N<G>(s0.AN, div, s0.QN); Second use

We start with our combinational design and change all the invocations to use

the same instance N . Filament tells us that this design is buggy. We’re attempting

to send two different inputs into the Nxt instance in the same cycle. However, Nxt

is a physical circuit and can only process one input every cycle. Therefore, we must

schedule the uses of the instance in different cycles and add registers to hold onto

the values, similar to the pipelined implementation.

comp Iter<G:1>(...)
Event may trigger every cycle
causing shared uses to conflict
s0 := N<G>(i.A, div, i.Q);

First use
s7 := N<G+7>(s6.AN, div, s6.QN);

Last use

With these changes, Filament complains with a new error message. Since we’re

sharing the instance Nxt over 8 cycles, the divider cannot start processing new

inputs every cycle. Again, this is because Nxt is a physical circuit that can only

process one input a cycle. To fix this, we can change the delay to 8 cycles which

guarantees to Filament that the instance will only be run every 8 cycles, resulting

in the final design (Figure 7.3d). This ensures that all iterations using the instance

N complete before new inputs are provided. Implicitly, Filament showed us that

reusing the instance is a trade-off: while we use fewer resources, our throughput

130

is also reduced since our iterative implementation can only process a new input

every 8 cycles compared to every cycle for the pipelined implementation.

7.1.6 Summary

Filament is an HDL for safe design and composition of static pipelines. Specifically,

Filament programs can specify and check timing properties of hardware modules

and ensure that:

1. Values on ports and wires are only read when they are semantically valid.

2. Hardware instances are not used in a conflicting manner.

These properties ensure that the resulting pipelines are safe, i.e., there are no

resource conflicts, and efficient, i.e., they can overlap computation as specified by

their interface without any overhead. Filament’s utility extends to components

defined outside the language as well. By giving external modules a type signature,

users can safely compose modules. Section 7.2 overviews the constructs in Filament,

§7.3 explains how Filament’s type system checks pipeline safety, and §7.4 shows

how Filament’s high-level constructs are compiled to efficient hardware.

7.2 The Filament Language

Figure 7.4 gives an overview of the Filament language. Filament’s level of ab-

straction is comparable to structural HDLs where computation must be explicitly

mapped onto hardware. Filament only has four constructs: components, instanti-

131

Events (Sec 3.1) parameterize
a component and represent its
start time. The delay indicates
number of cycles before
module accepts new inputs.

Interface ports (Sec 3.2) are
the physical ports by which an
event is provided at runtime.
Each event may have at most
one interface port.

Instantiation (Sec 3.3)
constructs specific
physical circuits.

Invocations (Sec 3.4)
are named uses of
instances that are
scheduled using events.

Connections (Sec 3.5)
represent physical wires.

Event Timelines allow reasoning about
pipelined execution. An event G with delay
n can trigger every n cycles. Invocations
scheduled at G+i may reexecute at or after
G+i+n. The type checker ensures that
pipelined use of invocations do not conflict.

Two cycles

Three cycles

Uneven cycles

(a) Possible timelines for event with delay of 2

comp main<G: 4>(
 @interface[G] go: 1,
 @[G, G+1] a: 32,
 @[G+2, G+3] b: 32
) -> (
 @[G, G+1] out: 32
) {
 A := new Adder;
 a0 := A<G>(a, b);
 out = a0.out;
}

Figure 7.4: Overview of the Filament language. Programs are a sequence of com-
ponent definitions which correspond to individual modules. The signature of the
component is parameterized using events. The body of component consists of three
types of statements: Instantiations, connections, and invocations.

ation, connections, and invocations. The first three have direct analogues in tradi-

tional HDLs while invocations are a novel construct.

7.2.1 Events and Timelines

Events are the core abstraction of time in Filament. Instead of using a clock sig-

nal, designs use events to schedule computation. The Filament compiler generates

efficient, pipelined finite state machines to reify events (§7.4.2).

Defining events There are only two ways to define events: (1) component signa-

tures bind event variables like G, and (2) users can write event expressions such as

G+n where n is a constant. Events have a direct relationship to clock: if G occurs

at clock cycle i, then G + n occurs at clock cycle i + n.2 This relationship with

clock is crucial since it allows Filament to represent timing properties of compo-

nents defined in clock-based HDLs. Adding event variables (G0+G1) is disallowed

since events correspond to particular clock cycles, and it is meaningless to add

them together.
2All event variables operate in the same clock domain, but this limitation can be removed in

the future.

132

comp AddMult<G:2>(
go: interface[G],
a: [G, G+1] 32,
b: [G, G+1] 32,
c: [G+1, G+2] 32

) -> (out: [G+2, G+3] 32) { commands }

(a) Component’s signature in Filament

clk

go

a 1 2

b 1 2

c 1 2

out 1 2

min delay1 2

(b) Pipelined use waveform

Figure 7.5: Signature and waveform diagram. The component allows pipelined
execution or reuse after two cycles allowing overlapped execution. Shaded regions
represent unknown values.

Timeline interpretation of events In order to capture potential resource con-

flicts from pipelined execution, Filament interprets events as a set of possible time-

lines. A timeline for an event G with a delay n is any infinite sequence of 1 cycle

long clock pulses such that each pulse is at least n cycles apart. Figure 2a shows a

set of valid timelines for an event with delay 2. By imbuing events with a timeline

interpretation, Filament can reason about repeated execution and consider how

pipelined executions may affect each other. By reasoning about such properties,

we can define and enforce safety properties for pipelined execution of hardware.

Furthermore, the timeline interpretation has a direct relationship to hardware: the

delay of an event represents how many cycles a user must wait before providing a

new set of inputs. This is usually referred to as the initiation interval of a pipeline

by hardware designers (§7.3.3).

7.2.2 Components

Filament programs are organized in terms of components which describe timing

behavior in their signatures and their circuit using a set of commands. Figure 7.5

shows the signature of a component in Filament (Figure 7.5a) and a waveform

diagram visualizing two sets of inputs being processed in parallel (Figure 7.5b).

133

The component is parameterized using the event G with a delay of 2 which means

that pipelined use can begin two cycles after the previous use.

Interface ports Hardware components typically have control ports which signal

when values on data ports are valid and that the computation should be performed.

Values on control ports are always considered semantically valid while values on

data ports are only valid when the corresponding control port is high. Filament

distinguishes control ports by defining them as interface ports. Interface ports are

1-bit ports that are associated with a particular event. When an interface port is

set to 1, it signals to the component that the corresponding event has occurred. For

example, setting go to 1 on an AddMult instance (Figure 7.5a) makes the module

start processing the inputs. The availability intervals of all ports that use an event

are relative to when the corresponding event’s interface port is set to 1. If an event

does not have an interface port, then the module can assume that the event triggers

every n cycles where n is the event’s delay.

Availability intervals The input and output ports of the component describe

their availability in terms of the events bound by a component. For AddMult (Fig-

ure 7.5a), all ports use the event G. Availability intervals are half-open: for example,

the input port a is available during [G,G+1) which means it available during the

first cycle when the component is invoked. Inside the body of a component, an

input’s availability interval represents a guarantee while an output’s availability

requires a requirement that the body must fulfill. When using a component, this is

reversed: inputs have requirements that must be fulfilled by the user while outputs

have guarantees.

134

7.2.3 Instances

All computations in a hardware design must be explicitly mapped onto physical

circuits. Filament’s new keyword allows instantiation of subcomponents. The fol-

lowing program instantiates two instances of the Add component named A0 and A1

that can be used independently. The instantiations do not provide bindings for

the Add’s event T ; invocations are responsible for providing those and scheduling

the execution of an instance.

comp Add<T: 1>(left: [T, T+1] 32, @[T, T+1] right) -> (o: [T, T+1] 32);
comp AddTwo<G: 1>(...) { A0 := new Add; A1 := new Add; ... }

7.2.4 Invocations

F := new Reg; // FSM
F.in = F.out == 0 ? 1 : 0;
M := new Mult; A := new Add;
M.right = F.out == 0 ? r : M.out
M.left = F.out == 1 ? l : M.out

Resource reuse in hardware designs is time-multiplexed, i.e., different uses of the

same resources are scheduled to occur at different times. This is done by building a

finite state machine (FSM) using a register and using the output of the register to

select which inputs to use. The example program computes (l × r)2 using a single

multiplier using the FSM F to forward the inputs l and r into the multiplier in

the first cycle and the output of the multiplier in the second cycle. However, the

assignment to M.left incorrectly forwards the value from M.out in the first cycle.

Mistakes in the control logic for the FSM do not lead to any visible errors; this

error will lead to the data getting silently corrupted and propagating into other

parts of the system.

comp Square<T:1>(left: [T, T+1] 32, @[T, T+1] right: 32) -> (
out: [T+1, T+2] 32) {

135

M := new Mult;
m0 := M<G>(l, r);
m1 := M<G+1>(m0.out, m0.out) }

In contrast, every use of an instance in Filament must be explicitly named

and scheduled through an invocation. The first invocation of the multiplier M is

scheduled using the event G, uses the inputs l and r, and is named m0. The second

invocation, scheduled one cycle later at G+ 1, can then use m0.out to refer to the

output of the first execution and pass it into the multiplier as an input. Because

the second invocation is scheduled one cycle later, the input ports have a different

requirement: the inputs must be available in the interval [G+ 1, G+ 2) as opposed

to [G,G+ 1) in the first invocation. This allows Filament to check that m0.out is

semantically valid when it is used as an input to m1 and that the two uses of

the multiplier are scheduled to occur at different times, allowing the compiler to

generate correct FSMs to schedule instance reuse. Each invocation only provides

inputs for the data ports and elides inputs for the interface ports. During compila-

tion, Filament’s compiler automatically infers assignments for the input ports and

generates efficient, pipelined FSMs to schedule the invocations (§7.4).

7.2.5 Connections

Filament programs allow ports to be connected and requires that the source is

semantically valid for at least as long as the destination. Connections are physically

implemented as continuously active wires connecting two ports in the circuit.

comp Add<G:1>(source: [G, G+3] 32) -> (dest: [G, G+1] 32) {
dest = source; }

136

7.2.6 Interfacing with External Components

Filament’s extern keyword allows the user to provide type-safe wrappers for black

box modules by specifying a type signature without a body. Filament’s standard

library, which provides signatures for components like multipliers and registers, is

defined using extern components.

Phantom events Phantom events allow Filament to model the behavior of com-

ponents like adders which are continuously active and do not take an explicit enable

signal. In the following signature, the event G is a phantom event because there is

no corresponding interface port for it in the signature. Section 7.4.4 describes how

user-level components can use phantom events.

extern comp Add<G: 1>(l: [G, G+1] 32, r: [G, G+1] 32) -> (
o: [G, G+1] 32))

Ordering constraints In order to capture the full expressivity of external com-

ponents, Filament allows defining ordering constraints between events. For exam-

ple, combinational components can provide a valid output for more than one cycle

if the inputs are provided for multiple cycles. Therefore, a more precise interface

of a combinational adder is:

comp Add<G: L-G, L: 1>(l: @[G, L] 32, r: [G, L] 32) -> (o: [G, L] 32)
where L > G

The events G and L mark the start and end for the input and output availability

intervals. In order to ensure that the interval [G,L] is well-formed, the signature

requires L > G. The component guarantees that the output is provided for as long

as the inputs are provided.

A := new Add;
// delay = (G+3)-G = 3

137

a0 := A<G, G+3>(x, y);

Parametric delays The new signature of adder additionally specifies a para-

metric delay of L−G cycles to signal that the adder may not be reused while it is

processing a set of inputs. In order to generate static pipelines which have input-

independent timing behavior, Filament requires all such expressions to evaluate

to a constant value. Like the example, an invocation of Add must provide some

binding of the form G = T + i and L = T + k such that k > i, ensuring that the

delay for the corresponding invocation is a compile-time constant k − i and the

ordering constraint L > G is satisfied.

The signature of registers in Filament allows them to provide the output for as

long as needed, similar to an adder. However, because a register is a state element,

it only requires its input for one cycle. Furthermore, the delay signals that the

register can accept a new write during the last cycle when the output is available.

comp Register<G: L-(G+1), L: 1>(
@interface[G] go: 1, in: [G, G+1] 32) -> (out: [G+1, L] 32) where L >

G+1;

7.3 Type System

Filament’s type system enforces two fundamental restrictions of hardware design:

1. All reads only use semantically valid values. A port or wire will always have

a value on it. Filament’s availability intervals mark when the values are

semantically valid.

2. Writes do not conflict. This is a corollary of the property that uses of a

resource must not conflict because use of a resource is represented through

138

Event delay must be at least as
long as any interval availability

[T, T+4] [T+2, T+6]

A.left = l1A.left = l0

Ensure that writes to the
same port do not conflict

[T, T+1) [T+1, T+2)

in = out

⊄

Ensure that all reads use
values that are available

Fundamental
Constraints

Well Formed Safe Pipelinability
Invocations must be
scheduled n cycles apart

/* A: Adder<T:n> */

a0 := A<G>(…)

a1 := A<G+5>(…)[T+1, T+2)

/* A.in: [T, T+1) */

a0 := A<G>(x)

Ports used by invocation
must be available

comp M<G:n>(
 @[G, G+k] in

) -> (@[G+4, G+l out)

Scheduling event’s delay
should be more than
subcomponent’s delay

comp M<G:m>(…) {
 /* A: Adder<T:n> */

 a0 := A<G>(…)

Invocations must not
conflict when pipelined

a0 := A<G>(…)

a1 := A<G+5>(…)

Figure 7.6: Overview of the Filament type system. The fundamental constraints of
hardware design imply other constraints. Well-formedness ensures that one execu-
tion of a component is correct. Safe pipelining ensures that pipelined executions of
the component are correct.

a write.

Filament ensures these properties using two checking phases: well-formedness

checking, which ensures that a single execution of a component is correct, and safe

pipelining, which ensures that pipelined executions of a component are correct.

7.3.1 Delay Well-Formedness

The delay of an event encapsulates all possible conflicts between parts of the

pipeline scheduled using it. Filament requires that the delay of an event is at

least as long as each interval that mentions it which ensures that instance reuse

does not create conflicts between its input and output ports.

It It+n

d

The proof is straightforward: for two invocations at

time t and t + n such that n ≥ d where d is the delay,

let It and It+n be the availability intervals of the input i. Since we know that the

start times of the intervals are at least d cycles apart (It+n − It ≥ d), and that

length of the intervals is bounded by d (|It| ≤ d) we can conclude that they do not

overlap.

139

7.3.2 Well-Formedness

Valid reads In order to ensure this property, Filament needs to make sure that

port values are only read when they are semantically valid. Signals are used in two

places:

1. Connections (§7.2.5) forward a value from one port to another. Filament

ensures that the availability of the output port is at least as long as the

requirement of the input port.

2. Invocations (§7.2.4) schedule the use of a component instance using a set

of events. Checking the validity of an invocation boils down to two steps:

the requirements of the instance’s input ports can be computed by binding

the event variables in its signature to the invocation’s event. Next, each

argument essentially represents a connection between the instance’s input

and the argument and is checked using the criteria for connections.

comp Mult<T:3>(...);
comp main<G:10>() {

M := new Mult;
// busy b/w [G, G+3]
a0 := M<G>(a, b);
// busy b/w [G+1, G+4]
a1 := M<G+1>(a0.out, b);

Conflict-free If an invocation schedules an instance with delay d using the event

G, the instance may not be reused between [G,G + d). This both ensures that

the there are no conflicts between input and output ports (§7.3.1) and that none

of the subcomponents conflict. The latter property holds because safe pipelining

constraints ensure that a valid delay can correctly encapsulate all possible conflicts

between subcomponents (§7.3.4). In the example program, the two invocations of

M overlap causing Filament to reject this program.

140

7.3.3 Initiation Intervals

Pipelining is an important optimization since it allows a module to process multiple

inputs in parallel. For example, a multiplier with a three cycle latency, but an

initiation interval of one cycle takes three cycles to compute an output but can

accept new inputs every cycle. In Filament, the delay of an event corresponds

to initiation interval. While hardware designers talk about initiation intervals of

a component, Filament generalizes it by allowing a component to have multiple

events. In this case, each event specifies the initiation interval of some part of the

internal pipeline. Filament ensures that the delay of a module describes a valid

initiation interval, defined as follows:

Definition 7.3.1 (Initiation Interval). Let P (t) be the execution of pipeline P at

time t. P (t0)⊥P (t1) states that the pipeline executions of P at t0 and t1 do not

have resource conflicts. Then I is a valid initiation interval of pipeline P if and

only if

∀n ≥ 0 P (t)⊥P (t+ I + n)

This definition requires that the pipeline is able to accept new inputs after any

amount of time after the initiation interval. There might be other delays smaller

than the initiation interval which allow the pipeline to accept new inputs in a

small window of time before becoming invalid again. This would correspond to the

following definition of an initiation interval I:

∀k 6= 0 P (t)⊥P (t+ k × I)

Filament uses the first definition because delays are also used to check the

well-formedness constraints of a component. If we used the second definition, the

141

well-formedness constraint would require that if an instance is scheduled at time

t, it may only be scheduled again at other times k ∗ t which we think is less com-

positional. Regardless, this is not a fundamental limitation since both definitions

can be encoded and enforced.

7.3.4 Safe Pipelining

While well-formedness ensures that one execution of a module is correct, i.e., all

reads use valid values and there are no conflicts, safe pipelining must ensure that

pipelined executions of the component do not create any additional conflicts. Check-

ing that pipelined executions do not conflict is very similar to checking that invo-

cations of the same instance do not conflict. This is because pipelined execution is

exactly the same—an instance being reused after a period of time. Filament must

show that for an invocation scheduled using event G, another invocation scheduled

at any time after G + d (where d is the delay) does not conflict with the first

invocation. The following checks are sufficient to prove this.

Triggering Subcomponents Filament requires that when an event is used to

invoke a subcomponent, the event’s delay must be at least as long as the delay of

the subcomponent’s event.

comp Mult<G:3>(@interface[G] go: 1, ...)
comp main<T:1>(@interface[T] go: 1, ...) {

M := new Mult; m0 := M<T+2>(...) }

The event T +2 is used to schedule the invocation of instance M which has a delay

of 3. However, T + 2 has a delay of 1, same as T . This is problematic because

main may trigger every cycle while M can only support computations every 3 cycles.

Filament therefore rejects this program.

142

comp Mult<G: 3>(...)
comp main<T: 3>(...)

{
M := new Mult;
m0 := M<T+2>(...);
m1 := M<T+10>(...);

Reusing Instances Previous checks already ensure

that: (1) shared invocations do not conflict during one

execution of the pipeline, and (2) pipelined execution of

an invocation does not conflict with itself. However, we

also need to ensure that pipelined invocations of a shared instance do not conflict

with each other.

a0 m0 m1

a1 m0 m1
conflicting use

b

a

The example program will pass all our pre-

vious checks but is erroneous: executing the

pipeline at time T and T + 10 will cause the m1 from the time T execution to

conflict with m0 from the time T + 10 execution. Because Filament’s definition of

initiation interval allows re-execution at any time in the future, we must require

that all invocations of a shared instance complete before the pipelined execution

begins. The following is sufficient to ensure this: the delay must be greater than

the number of cycles between the start of the earliest invocation and the end of

the last invocation of a shared instance.

comp Dyn<G: ??, L: ??>(..) {
M := new Mult;
a0 := M<G>(a, b);
a1 := M<L>(a0.out, b); }

Dynamic Reuse Since Filament components can be parameterized by multiple

events, it is possible to invoke an instance using two different events. In the example

program, the type-checker would have to prove that the intervals [G,G + 3) and

[L,L + 3) do not overlap to enforce conflict freedom. The constraint L ≥ G + 3

is sufficient to prove this. However, there is no way to statically pipeline this

module: the delay of G is dynamic, it depends on exactly which cycle L is provided

which cannot be known a priori. There is no compile-time constant value that can

express the delays for both events. This is because delays describe the timeline for a

143

single event whereas dynamic modules require relating multiple events. Filament’s

solution is to disallow ordering constraints between events in user-level components

which disallows the example program. External components (§7.2.6) can still use

ordering constraints, but such constraints can only be satisfied using the natural

order defined on G+ n events. This means in a well-typed program:

1. All delays evaluate to compile-time constants.

2. Invocations of a shared component all use the same event.

These constraints allow the compiler to generate efficient, statically timed

pipelines from well-typed programs. Extending Filament with safe dynamic pipelines

is an avenue for future work.

7.4 Compilation

Figure 7.7 shows an overview of the compilation flow. The primary goal of Fila-

ment’s compilation pipeline is to transform the abstract schedules of invocations

into explicit, pipelined control logic. The compiler first lowers programs into Low

Filament which is an untyped extension of the Filament language that explic-

itly uses pipelined finite state machines (FSMs) to coordinate the execution of a

module. Next, the compiler translates the program into the Calyx intermediate

language [116] which performs generic optimizations and generates circuits.

144

Filament

Bind
check

Interval
check

Phantom
check

Type Checking

Lowering
Sec 5.2 Calyx represents the final hardware.

Assignments to invocations have been
replaced with the corresponding
instance.

Compile
Sec 5.3

component main(
 go: 1, a: 32, b: 32
) -> (out: 32) {
 cells {
 Gf = fsm_3();A = Adder;
 }
 wires {
 Gf.go = go; out = A.out;
 A.go = Gf._0 || Gf._2;
 A.left = Gf._0 ? a;
 A.right = Gf._0 ? a;
 A.left = Gf._2 ? b;
 A.right = Gf._2 ? b;
 }
 control {/* empty */}
}

comp main<G>(...) {
 fsm Gf[3](go);
 A := new Adder;
 a0 := invoke A<G>;
 a0.go = Gf._0;
 a0.left = Gf._0 ? a;
 a0.right = Gf._0 ? a;
 a1 := invoke A<G+2>;
 a1.go = Gf._2;
 a1.left = Gf._2 ? b;
 a1.right = Gf._2 ? b;
 out = a0.out;
}

Low Filament (Sec 5.1) program
that uses an FSM to explicitly
schedule execution of invocations
a0 and a1. Inputs for each
invocation is explicitly guarded
using FSM states corresponding
to the scheduling event.

comp main<G: 4>(
 @interface[G] go: 1,
 @[G, G+1] a: 32,
 @[G+2, G+3] b: 32
) -> (@[G, G+1] out: 32) {
 A := new Adder;
 a0 := A<G>(a, a);
 a1 := A<G+2>(b, b);
 out = a0.out;
}

Figure 7.7: Compilation Flow. Filament programs are type checked (§7.3) and low-
ered to Low Filament (§7.4.1) programs. Lowering (§7.4.2) instantiates explicit
FSMs to schedule invocation. Finally, Low filament programs are compiled to Ca-
lyx [116] which optimizes the design and generates hardware circuits.

7.4.1 Low Filament

Low Filament is an untyped version of Filament that introduces new constructs to

explicitly represent the pipelined execution of a module.

Explicit Invocations Low Filament requires all ports corresponding to an in-

vocation to be explicitly assigned. This includes interface ports, which high-level

Filament manages implicitly.

in = g1 ? out;
in = g2 ? out;

Guarded Assignment Filament uses guarded assignments

to express multiplexing of signals and correspond directly to

guarded assignments in Calyx [116]. The assignment only forwards the value from

out when the guard is active. Otherwise, the value forwarded to in is undefined.

Calyx’s well-formedness condition requires that only one of the guards is active at

145

a time for any given source port.

fsm F[n](trigger);

G G+1 G+2 G+3

trigger

Finite state machines Low Filament also provides

the fsm construct to explicitly instantiate a pipeline

FSM. This defines the FSM F with n states and a sin-

gle input port trigger which triggers its execution. This

generates a shift-register of size n with ports: F._0, …,

F._{n-1}. If trigger is set to 1 at event G, the port F._i

will become active at event G+ i.

7.4.2 Generating Explicit Schedules

The compilation from Filament to Low Filament ensures that all high-level invoca-

tions have been compiled into explicit invocations. Figure 7.7 shows the compilation

process for a program that uses an adder (A) through two invocations (a0 and a1).

FSM Generation The compiler instantiates an FSM for each event parameter-

izing the module. The example program uses event G to schedule the invocations.

The compiler walks over all expressions G+ i in the program to compute the num-

ber of stages for the pipelined FSM. While the original program does not explicitly

mention the event G + 3, it is implied by the output port a1.out which is active

in the interval [G+ 2, G+ 3]. The compiler instantiates the FSM Gf with 3 states

triggered by the go signal. Note that the delay of the FSM does not affect the

generation of the FSM.

146

Triggering Interface ports The compiler then lowers the invocations by gen-

erating explicit assignments to the adder’s interface port go. The first invocation,

scheduled at G, uses the port Gf._0 to trigger the invocation while the second

invocation, scheduled at G+ 2, uses the port Gf._2.

Guard Synthesis In order to ensure that assignments from the two invocations

to the data ports left and right do not conflict, the compiler synthesizes guards

for the assignments. If the input port of an invocation require inputs during the

interval [G + s,G + e], the compiler generates the guard Gf._s || ... || Gf._e

for the guard. Since the program is well-typed, the guard expressions for each

invocation are guaranteed to not conflict (§7.3).

7.4.3 Lowering to Calyx

Low Filament is intentionally designed to be close to Calyx, so compilation is

straightforward. For each FSM size n, we generate a Calyx component and instan-

tiate it for the corresponding Filament component. The FSM is simply a sequence

of registers connected together. Since assignments to all ports are explicit in Low

Filament, we can simply compile the invocations by replacing them with the cor-

responding instance name. In the example program, assignments to both a0.left

and a1.left are compiled to assignments to A.left. Since Filament guarantees

that the generated guards are disjoint, we can be sure that Calyx will generate

correct FSMs.

147

7.4.4 Optimizing Continuous Pipelines

Continuous pipelines do not make use of a signal to indicate when their inputs are

valid and instead, they continuously process inputs. We can express such pipelines

in Filament using phantom events (§7.2.6). Phantom events do not have a corre-

sponding interface port and therefore cannot be used to trigger invocations. Fila-

ment ensures that a phantom event is used correctly through its phantom check

analysis which ensures:

Definition 7.4.1 (Phantom Check). A phantom event G is used correctly if:

1. It is not used to share any instances.

2. It is only used to invoke subcomponents that use phantom events.

First, resource sharing is disallowed because any pipeline that shares an in-

stance must use some signal to trigger an internal FSM and track which use of

the instance is currently active. Second, a phantom event is only available at the

type-level and cannot be reified since there is no interface port. Therefore, only

components that use phantom events can be invoked with a phantom event.

Filament defines two state primitives: a register and a delay component.

comp Register<G: L-(G+1), L: 1>(
@interface[G] en: 1, in: [G, G+1] 32

) -> (out: [G+1, L] 32) where L > G+1;

comp Delay<G: 1>(
in: [G, G+1] 32

) -> (out: [G+1, G+2] 32);

As the type signatures denote, the difference is that a register can hold onto a

value for an arbitrary amount of time while a delay can only hold onto a value for

a single cycle. The Delay component accepts inputs every cycle and can therefore

provide the output for one cycle. In contrast, the register can use the en signal to

hold onto a value for an arbitrary amount of time.

148

x ∈ vars t ∈ events p, q ∈ ports

T ::= t | T + n π ::= [T1, T2]

M ::=

def C〈t : n〉(p1 : π1, . . . , pj : πj){c}
c ::= c1 • c2 | pd = ps | x := new C

| x := inv x〈T 〉(p1, . . . , pj)
τ ::= ∀〈t : n〉(p1 : π1, . . . , pj : πj)

(a) Abstract syntax

JcK : L → L L : T → R×WJpd = psK (L) = map(λ(R,W). if ps ∈ W

then (R{ps/pd},W) else (R,W), L)Jc1 • c2K (L) = Jc1K (L) ∪ Jc2K (L)
(b) Log-transformer semantics

∆,Λ1,Γ ` c1 a Λ′
1,Γ1

∆,Λ2,Γ ` c2 a Λ′
2,Γ2

∆,Λ1 ∗ Λ2,Γ ` c1 • c2 a Λ′
1 ∗ Λ′

2,Γ1 ∪ Γ2
CheckComp

(c) Composition judgement

Figure 7.8: Formal semantics of Filament where command is defined as a log-
transformer. Typing judgements track the active timeline of an instance and ensure
they are used in a disjoint manner.

Compilation The compiler does not instantiate FSMs or synthesize guards for

invocations triggered using phantom events. Since Phantom Check ensures that all

subcomponents themselves do not have an interface port, the compiler does not

have to generate assignments for them. Filament generated code for continuous

pipelines matches expert-written code.

7.5 Formalization

Figure 7.8a presents a simplified syntax for Filament: all components can be pa-

rameterized using exactly one event and cannot specify any ordering constraints

between events. Since Filament disallows any form of event interaction in user-level

components, multi-event user-level components are not fundamentally more expres-

sive. Multi-event external components are more expressive but not supported in

149

our formalism. A Filament program (P) is a sequence of components which define

a signature and a body in terms of commands: composition, connection, instanti-

ation, and invocation.

7.5.1 Semantics

Figure 7.8b presents Filament’s semantics which is defined as functions over logs

(L). A log maps events (T) to a set of ports that are read from (R) and a multiset

of ports that are written to (W). Intuitively, a log captures all the reads and writes

performed during every cycle of a component’s execution. We track the multiset

of writes to capture conflicts—if there are multiple writes to the same port in the

same cycle, then the program has a resource conflict.

Concrete logs are generated by the semantics of component definitions while

commands simply transform them. For example, a port connection forwards the

value from the source port ps to the destination port pd. We model this by sub-

stituting all occurrences of pd to ps in the read set R when ps is defined in the

write-set W and mapping it over all defined events in the log. Composition reflects

the parallel nature of hardware—it simply unions the two logs together. Write

conflicts can appear due to composition. The semantics of a program is the log

generated by executing a distinguished main component with the empty log. We

formalize the well-formedness (§7.3.2) and safe pipelining (§7.3.4) constraints of

the type system using this semantics.

Definition 7.5.1 (Well-Formedness). A component M is well-formed if and only

if its log is well-formed. A log L is well-formed if and only if, for each event:

• There are no conflicting writes: Ws = W where Ws is the deduplicated set of

150

writes.

• Reads are a subset of writes: R ⊆ Ws

Definition 7.5.2 (Safe Pipelining). If a component M has an event T with delay d,

and JMKG represents its log where T is replaced with the event G, then M is safely

pipelined if and only if all logs Ln are well-formed: Ln = ∀n ≥ d JMKT ∪ JMKT+n

7.5.2 Type System

Filament implements a type system inspired by separation logic [133] to enforce

the well-formedness and safe pipelining constraints. Our presentation focuses on

the specific typing judgement that ensures that there are no conflicting uses of

an instance. Appendix B.3 provides the full type system. At a high level, our

typing judgement for composition (Figure 7.8c) mirrors the parallel composition

rule used in concurrent separation logic [23]—the two commands are checked under

two disjoint resource contexts. Our insight is adapting the definition of separating

split to timelines of instances and ensuring that instance reuse does not conflict.

The typing judgements have the form: ∆;Λ; Γ ` c a Λ′; Γ′. Γ is the standard type

environment, ∆ tracks each event’s delay, and Λ is the resource context.

Resource contexts and separating split Λ is the resource context and tracks

the availability of each instance and port in the form of an interval (π). After

instantiation, each instance is available in the interval [0,∞). The invocation rule

(not shown) checks that, for an instance’s event with a delay d, the instance is

available in the interval [G,G+d) where G is the scheduling event. The composition

rule (Figure 7.8c) splits the resource context before checking the two commands:

151

Λ = Λ1 ∗ Λ2 iff ∀(x : π) ∈ Λ ⇒

∃π1, π2.(x : π1) ∈ Λ1 ∧ (x : π2) ∈ Λ2 ∧ π1 ∩ π2 = ∅ ∧ π1 ∪ π2 = π

A valid split is one where the resulting contexts have disjoint intervals for

each instance and the union of the intervals is the original interval. By using

this definition of split, Filament ensures that invocations reuse instances in a non-

conflicting manner. Appendix B.4 presents the remaining type judgements that

encode constraints to enforce well-formedness and safe pipelining and proves the

following type soundness theorem:

Theorem 7.5.3. If ∆;Λ; Γ ` c a Λ′; Γ′ then JcK is well-formed (Definition 7.5.1).

7.6 Evaluation

We evaluate Filament’s ability to efficiently express a number of accelerator designs

and to express the interfaces generated by state-of-the-art accelerator generators.

Our evaluation answers the following questions:

1. Can Filament express the interfaces generated by state-of-the-art accelerator

generators and integrate with existing tools?

2. Can Filament be used to generate efficient accelerators?

Implementation The Filament compiler is implemented using a pass-based

compiler in 5426 lines of Rust, 341 lines of Verilog for the standard library prim-

itives, and the latest version of the Calyx compiler [116] to generate Verilog. All

benchmarks compile in under a second.

152

7.6.1 Expressivity Evaluation

To demonstrate the expressivity of Filament, we focus on giving type signatures

to designs generated by Aetherling [52].

0 1 2

TSeq 3 0 (TSeq 1 1 int)

Aetherling’s space-time types Aetherling [52] is

a functional, dataflow DSL that generates statically-

scheduled, streaming accelerators for image processing

tasks. Aetherling’s “space-time” types enable users to express the shape of the data

stream as a sequence of valid and invalid signals. For example, the type TSeq 1 1

denotes that there will be a stream with one valid element followed by one invalid

element. Nesting these types allows users to express more complex shapes: TSeq 3

0 (TSeq 1 1) denotes that there will be three valid elements, with no invalid values,

each of which has a shape described by TSeq 1 1. In our case study, we import

14 designs implementing two kernels: conv2d and sharpen. Aetherling’s evaluation

studies 7 design points for each kernel with different resource-throughput trade-

offs. Filament can express the interface types for all designs and, in the process,

finds several bugs in the generated interfaces.

Cycle accurate harness We implemented a generic, cycle-accurate harness to

test Filament programs. At a high-level it:

1. Provides the inputs for exactly the cycles specified in a component’s interface.

2. Pipelines the execution of the component using event delays.

3. Captures the value of output ports in the intervals provided in the signature.

153

Throughput Reported Actual
16 7 7
8 6 6
4 6 6
2 6 6
1 7 7
1/3 10 12
1/9 16 21

(a) Reported latencies for conv2d

Throughput Reported Actual
16 7 7
8 7 7
4 7 7
2 7 7
1 8 8
1/3 11 13
1/9 17 20

(b) Reported latencies for sharpen

Table 7.1: Latencies of Aetherling Designs. Highlighted latencies are reported in-
correctly by Aetherling.

The harness extracts the availability intervals and the event delays using a simple

command-line flag provided to the compiler and executes the design using the

cocotb Python library. The design of this generic harness is reliant on a Filament-

like system to document the timing behavior of modules; without Filament, a user

would have to manually extract this information from the Verilog code.

Methodology We compile each Aetherling design to Verilog and use Aether-

ling’s command line interface to extract the design’s latency information. Each

benchmark has five fully-utilized designs, which can accept new inputs every cycle,

and two underutilized designs which produce 1/3 and 1/9 pixels per clock cycle and

accept new inputs every 3 and 9 cycles. We give each design a type signature and

validate its outputs. For designs with mismatched outputs, we change the latency

till we get the right answer.

Latency Table 7.1 reports the latencies as provided by Aetherling’s command

line interface and those that we found to generate correct outputs with Filament’s

cycle accurate test harness. Of the 14 designs, Aetherling reports incorrect latencies

for 5 designs.

154

Underutilized designs Aetherling explores the utility of underutilized designs

which produce less than one pixel per clock cycle. Aetherling’s compiler optimizes

such designs by sharing compute resources. An Aetherling design that produces 1/9

pixels per clock has the type TSeq 1 8 uint8 which states that there will be 1 valid

datum followed by 8 invalid ones. The type indicates that the design generated by

Aetherling should only use its input in the first cycle since the data provided in

the next cycles is invalid. However, this interface is incorrect.

comp Conv2d<G: 9>(
@[G, G+6] I: 8,

) -> (O: [G+21, G+22] 8);

TSeq 1 8 uint8

@[G, G+6]

The Filament type, which reflects the actual interface needed to correctly exe-

cute the module, requires the design to hold its input signal for six cycles, i.e., the

data element must be valid for six cycles instead of just one; the Aetherling im-

plementation breaks its own interface. The Aetherling test harness does not catch

this bug because it always asserts all inputs for 9 cycles. In contrast, Filament’s

test harness only asserts the input signal for as long as the corresponding avail-

ability interval specifies. Finally, the delay for the phantom event G encodes the

fact the design can process a new input every 9 cycles. This illustrates the subtlety

of specifying time-sensitive interfaces which accurately describe signal availability

and pipelining.

7.6.2 Accelerator Design with Filament

We study Filament’s efficacy in generating efficient designs and reusing compo-

nents generated from other languages by implementing a two-dimensional convolu-

tion in Filament. We build two Filament-based designs and compare them to the

155

(a) Line buffer in the
Stencil component

× ×

+

(b) Base design uses
pipelined 3-cycle multi-
plier

DSP48E2

DSP48E2

DSP48E2

(c) Reticle-based design
uses DSP cascade

Figure 7.9: Components used in the design of Filament-based conv2d convolution.
The stencil component provides the last three inputs and is either connected to
the naive multiplier or a Reticle-generated DSP cascade.

Aetherling-generated conv design.

Architecture Our implementation is directly inspired by the structure of the

Aetherling implementation of conv2d that outputs 1 pixel per clock cycle. The

design uses a 3×3 filter over a 4×4 matrix. The Stencil module (Figure 7.9a) im-

plements a line buffer to save the last 11 values and outputs 9 values corresponding

to the filter start index. The Conv2d kernel takes 9 values as inputs and produces

an output corresponding to the result of the convolution.

comp Prev[SAFE]<G: 1>(
@interface[G] en: 1,
in: [G, G+1] 32,

) -> (out: [G, G+1] 32);

Stream primitives in Filament To implement line buffers, we implement a

new Prev component which outputs the last value stored in it.3 The Verilog im-

plementation of Prev is simply a register but Filament gives it a different type

signature—it allows access to the output in the same cycle when the input is

provided which corresponds to reading the previous value in the register. The
3prev is a common operator in dataflow and functional reactive languages.

156

component uses a compile-time parameter SAFE to indicate whether the first read

produces an undefined value. We also define a ContPrev component which is sim-

ilar to a Prev component but uses a phantom event and can therefore be used in

continuous pipelines (§7.4.4). The stencil component (Figure 7.9a) is implemented

as a sequence of Prev components.

Design 1: Pipelined multipliers The base Conv2D kernel uses fully pipelined

multipliers with a three cycle latency and combinational adders. The multipliers

do not have any associated Verilog implementation—they are implemented using

Xilinx’s LogiCORE multiplier generator. However, Filament makes it easy to in-

terface with them by providing a type-safe extern wrapper (§7.2.6).

comp Tdot<G: 1>(
clk: 1, reset: 1,
a0: [G, G+1] 8,
b0: [G, G+1] 8,
a1: [G+1, G+2] 8,
b1: [G+1, G+2] 8,
a2: [G+2, G+3] 8,
b2: [G+2, G+3] 8,
c: [G+2, G+3] 8,

) -> (y: [G+5, G+6] 8)

Design 2: Integrating with Reticle Our second design uses a dot-product

unit generated using Reticle [154], a low-level language for programming FPGAs.

Figure 7.9c shows the architecture Reticle generates to make use of DSP cascading

which efficiently utilizes resources present on an FPGA. DSP cascading explicitly

instantiates low-level FPGA primitives and connects them together to implement

the computation: y = c + Σ3
i=0ai × bi. Unlike standard compilation flows which

rely on the synthesis tool to infer DSP usage from behavioral descriptions, Reticle

generates structural descriptions that predictably map onto DSPs. We provide a

type signature for the Reticle design which indicates that the inputs must be pro-

157

Name LUTs DSPs Registers Freq. (MHz)
Aetherling 104 10 78 769.2
Filament 128 9 11 833.3
Filament Reticle 14 9 20 645.1

Table 7.2: Resource usage and frequency of conv2d designs. Best values highlighted.

vided in a staggered manner. Note that this is not implementation details leaking

through—a DSP cascade that starts a new computation every cycle needs to either

register all its inputs or provide them in a staggered manner.

Evaluation methodology We validate the correctness of all the designs using

our timing-accurate test harness and compare the area and latency of the designs.

For each design, we increase the target frequency till we reach worst negative slack

of less than 0.1ns and synthesize them using Vivado v2020.2. Each design has a

throughput of 1 pixel per clock cycle.

Summary Table 7.2 shows the results of the comparison: the Filament design

can be synthesized at a higher frequency and uses fewer resources than the Aether-

ling design. This is because Filament can safely and directly use low-level imple-

mentation modules which can be directly compiled into a safe and efficient design.

In contrast, the Aetherling compiler has to generate extra logic when bridging

the gap between its high-level language and low-level circuits. The Reticle-based

design uses an order of magnitude fewer logic resources than the base Filament de-

sign or the Aetherling design. This is because unlike Aetherling, Reticle generates

low-level structural Verilog which can predictably map onto DSP resources. This

demonstrates the utility of Filament as both an integration and design language—

designs in Filament can use low-level hardware modules safely and compose com-

plex modules generated from other languages. It also reveals another use case for

158

Filament: instead of directly generating Verilog, Aetherling-like languages can gen-

erate Filament programs and enable performance engineers to optimize the designs

further and remove abstraction overheads.

159

CHAPTER 8

CORRECT AND COMPOSITIONAL HARDWARE GENERATORS

Filament provides a new foundation for reasoning about modular and efficient

composition of hardware designs. However, it is limited to describing the composi-

tion of individual circuits. In realistic designs, users want to specify an entire family

of circuits. For example, when implementing a dot-product module, the user can

decide to allocate one multiplier and use it over multiple cycles to perform the com-

putation, leading to a resource-efficient but high-latency design, or allocate mul-

tiple multipliers to compute the result faster but yield a more resource-expensive

implementation. These circuits are all related to each other because they imple-

ment the same computation—a dot-product—but express different performance

characteristics.

Existing tools provide three different mechanisms to express such families of

circuits:

• Parameterization: hardware description languages (HDLs) like SystemVer-

ilog [11] and Bluespec [119] provide compile-time constructs like for-loops and

conditionals [11, §27] which, like software metaprogramming [49, 54, 134], can

generate code at compile time.

• Metaprogramming: Embedded hardware description languages (eHDLs)

like Chisel [13] and PyMTL [101] are embedded in software languages like

Scala and Python. In eHDLs, executing the host language program generates

the circuit allowing users to utilize host language constructs for metaprogram-

ming.

• Custom Tools: Depending on the complexity of the circuit and the optimiza-

tion goals, users might develop customized tools like FloPoCo [46]. Similar

160

to the Systolic Array generator in Calyx (§6.2), such tools are implemented

as arbitrary software programs and intended to generate specific hardware

blocks.

We term such tools hardware generators. Hardware generators are useful for

producing specific hardware blocks which are utilized in the context of a spe-

cific, general-purpose design. Hardware generators are powerful because they are

reusable and flexible. Flexibility means that they can be used to explore perfor-

mance trade-offs for a given computation. The burden of correctness is also moved

away from the core design. Once a designer of a hardware generator proves the im-

plementation correct, the main design can use any generated design without worry-

ing about its correctness. Flexibility enables reuse: different designs have different

requirements and might want to trade off performance for resource consumption.

However, this flexibility of hardware generators complicates their integration

into large-scale designs. Users have two choices for integration:

Link specific instances Because hardware generators express an entire design

space of circuits, a designer might instantiate a particular point in the design space

and integrate it. This is straightforward because any specific design point will have

particular interfaces and timing behaviors which can be easily hard-coded into the

surrounding glue code. However, this loses out on the power of generators: instead

of exploring trade-offs in the context of a complete implementation, the user must

commit to a specific design point and then build the rest of the circuit around it. In

order to explore a new design point, the surrounding circuit must be reconstructed.

This is by far the most common approach to integration.

161

Link generators The other choice is to link together generators. There are

two challenges to this. First, it is not clear what the interface of a generator is:

the latency of a dot-product implementation from a generator is dependent on the

number of multipliers available. However, existing HDLs do not provide an easy way

to capture this information. Second, integrating generators amounts to composing

entire design spaces of circuits which exponentially increases the complexity and

complicates reasoning about correctness.

This chapter demonstrates an approach that allows us to retain the flexibility

of generators while automatically proving the correctness of their composition. The

key insight is that parameters can influence timing behaviors and therefore must be

modeled in the interface of generators. We extend Filament’s type system to express

and reason about parametric designs. In developing this extension, we exploit the

symmetry between universal and existential types to formally characterize bottom-

up parameterization. Bottom-up parameterization allows us to provide interfaces to

modules generated by custom tools and allows Filament to integrate them flexibly.

In doing so, we enable Filament to become the ultimate integration tool capable

of integrating not just individual hardware modules but entire ecosystems of tools.

8.1 Motivating Example

We motivate the use of parameterized designs and generators by implementing a

pointwise multiplication module that processes two, 4-element vectors.

162

8.1.1 Initial Implementation

We start by implementing a specific implementation of the dot-product module.

The computational specification of pointwise multiplication is straightforward:

let a, b, o: int[4];
for (let i = 0 .. 4) { o[i] = a[i] * b[i] }

When implementing this computation in hardware, we need to make several deci-

sions. First, how many multipliers should be allocated; allocating more multipliers

will allow for more parallel computation and reduce its latency but require more

resources. Second, how can we safely reuse the allocated multipliers over time.

A given multiplier will have a latency—the number of cycles it takes to produce

an output—and an initiation interval—number of cycles before it can accept new

inputs. A pipelined multiplier can accept new inputs before it is finished processing

the previous set of inputs. Filament allows us to specify and check for the second

set of constraints:

comp Mul<'G:1>(
l: ['G,'G+1] 32, r: ['G,'G+1] 32) -> (out: ['G+3,'G+4] 32);

The latency of the module is encoded using the output out’s availability interval

and event G’s delay encodes the initiation interval (§7.2).

Next, we allocate two multipliers to process the inputs. We extend Filament

ports to be able to accept and produce array values as arguments (§8.2.3)

comp PointMul<'G:2>(a[4]: ['G,'G+2] 32, b[4]: ['G,'G+2] 32) -> (
o[4]: ['G+4, 'G+5] 32

) {
M0, M1 := new Mul;
// First set of computations
o0 := M0<'G>(a[0], b[0]);
o1 := M1<'G>(a[1], b[1]);
d0 := new Delay<'G+3>(o0.out);
d1 := new Delay<'G+3>(o1.out);
// Second set of computations

163

o2 := M0<'G+1>(a[2], b[2]);
o3 := M1<'G+1>(a[3], b[3]);
// All output values appear at 'G+4
o[0] = o0; o[1] = o1; o[2] = o2; o[3] = o3;

}

In order to process four elements using two multipliers, the module runs two com-

putations in parallel at a time. The first two computations occur over the first

two indices of the arrays, start at 'G, and produce outputs available at ['G+3,G+4].

Because the multiplier is fully-pipelined, the next computations can be started at

'G+1 and produce the output at ['G+4,'G+5]. In order to ensure all outputs are

available in the same cycle, we use a Delay component to delay the outputs from

the first computations by one cycle. The total latency of the module is four cycles.

Because the multipliers are reused in the component, the initiation interval (II) of

the component limits to accepting new inputs every other cycle (II=2).

The latency and initiation intervals are both a functions the number of multi-

pliers: had we allocated four multipliers, the component could accept new inputs

every cycle (II=1) and have a latency of three cycles. On the other hand, allocating

only one multiplier would result in an implementation with II=4 and latency of

seven. Note, however, that these implementations express a resource-performance

trade-off: allocating more multipliers increases the resource requirements of the

component and different users might want to pick different points in the design

space. Pre-committing to one implementation limits the possibility of exploring

a design space of implementations. Instead, we would like to design a component

that can express all of these trade-offs in one implementation.

164

8.1.2 Parameterized Design

Parameterization allows users to implement generators, each of which expresses

a family of circuits. The most common approach in HDLs is to provide metapro-

gramming capabilities: language constructs which can be used to generate code

at compile time. For example, SystemVerilog [11] provides compile-time for loops

which can generate code based on parameter values:

parameter N = 4;
input l[N-1:0], r[N-1:0];
output o[N-1:0];
for (i = 0; i < N; i++) begin

OrGate o(l[i], r[i], o[i]);
end

Which would generate the following circuit:

OrGate o0(l[0], r[0], o[0]);
OrGate o1(l[1], r[1], o[1]);
OrGate o2(l[2], r[2], o[2]);
OrGate o3(l[3], r[3], o[3]);

Parameterized designs can enable powerful design-space exploration capabilties

in both complex processor designs [168], domain-specific architectures [61], and

custom accelerators [138]. We extend Filament to support parameterized design

and attempt to build a pointwise multiplication unit that takes the number of

multipliers as a parameter:

comp PointMul[N]<'G:..>(a[4]: .., b[4]: ..) -> (o[4]: ..) {
for (let i = 0 .. N) {

M := new Mul;
for (let j = 0 .. 4/N) {

m := M<'G>(a[i+N*j], b[i+N*j]);
o[i+M*j] = m.out

}}i}

We define the parameter N for the PointMul component and generate N multipliers

which each process N ÷4 elements of the array. We leave out the delay of the even

and the availability intervals for ports. Testing this design with N = 4, we will

165

get the right results but when setting N = 2, we see the problem: all invocations

(§7.2.4) of the multiplier are scheduled at the same time; we are attempting to send

in all the N ÷ 4 inputs at the same time! Unsurprisingly, parameterization makes

testing exponentially harder: each implementation has a large space of design space

of point each of which might express different reuse policies and timing behaviors.

To fix the implementation, we have to change when the invocations are scheduled

so that they respect the initiation interval of the multiplier:

for (let j = 0 .. 4/N) {
m := M<'G+i>(a[i+N*j], b[i+N*j]);
d := new Delay<'G+3+j>(m.out);
o[i+M*j] = m.out

}

We also delay the outputs from the multiplier so that they arrive at the same time.

Given this, we can state the interface for the module:

comp PointMul[N]<'G:4/N>(
a[4]: ['G,'G+4/N] 32,
b[4]: ['G,'G+4/N] 32

) -> (
o[4]: ['G+2+4/N,'G+3+4/N] 32

) where 4 % N == 0

The latency of the module is LMul+
4
N
+1 where LMul is the latency of the multiplier

(three in this case). The II of the module is limited by the reused multiplier: each

of the N multipliers are reused over 4
N

cycles and therefore the whole module must

wait for that many cycles before accepting new inputs. Finally, we also require that

N perfectly divides four to ensure that the inputs can be processed evenly.

Discussion The example demonstrates the challenges of parameterized design.

(1) testing is insufficient to establish the correctness of a parameterized implemen-

tation, (2) reusing pipelined resources becomes increasingly challenging, and (3)

capturing the interfaces of parameterized designs requires tracking the influence of

166

parameters on timing behavior of the module. We delve on the importance of (3) in

the next section that demonstrate that correct and efficient parameterized design

fundamentally needs to address the influence of parameters on timing behaviors.

8.1.3 Integrating with External Generators

As our final extension, we would like our pointwise multiplication kernel to operate

over floating-point values instead of integers. We could choose to implement our

own floating-point multiplier but efficient design requires picking between many

possible implementation choices [60]. Instead, we can use floating-point core gen-

erator like FloPoCo [46].

FloPoCo takes the bitwidths of inputs and outputs as well as target frequency

and target device parameters and generates synthesizable VHDL [79] code for the

computation:

flopoco FPMult wE=8 wF=23 frequency=300 target=Virtex5

This command above will generate a 32-bit floating-point multiplier with 8 expo-

nent bits (wE=8) and 8-mantissa bits (wF=23). Unlike an HDL generator, FloPoCo

is implemented as a tool in C++ and uses a customized internal representation to

automatically pipeline and optimize a floating-point operation for a target device

and frequency. However, different target frequencies and devices require different

amounts of pipelining: a target frequency of 100MHz might require one pipeline

stage while a frequency of 500MHz might require eight. Once again: we have the

choice of generating a specific instance and gluing it to the rest of the design,

thereby limiting our ability to explore new designs, or integrating all possible mul-

tiplier circuit that can be generated.

167

We can frame the latter integration as connecting a parameterized design whose

implementation is decided upon by the FloPoCo tool. Given this, we can write the

following interface:

comp FPMult[wE, wF]<G:??>(l: [G, G+1] W, r: [G, G+1] W) -> (
out: [G+??, G+??] W

) where W = wE + wF + 1

To complete the interface, we need to specify the initiation interval and the latency

of the generated circuit. FloPoCo always generates fully pipelined designs [46],

which means the delay for event G is one. However, the latency is a function of

the input bitwidth as well as the target frequency and target board:

L = f(wE,wF, freq, board)

Worse still, this function has no closed-form representation: it is entirely decided

upon by the FloPoCo’s internal heuristics and might change from version to ver-

sion!

This is an instance of a general problem: certain components have complex de-

pendencies between parameters and timing behaviors that cannot be easily express

or captured at compile-time. For example, a component might switch between a

combinational multiplier or a pipelined one based on a parameter value. Similarly,

when using open-source libraries like HardFloat [72] which implement purely com-

binational designs and expect users to add registers and optimize them at synthesis

time using register retiming tools [98]. In all these cases, the component’s latency

does not have an expressible relationship between input parameters and timing

behaviors.

Output parameters Input parameters correspond to universally-quantified types:

they parameterize a module using abstract type variables. Existential types are the

168

dual of universally-quantified types and are used to hide implementation details

while forcing clients to conform to the right interface. We exploit this duality

and define output parameters as the existential dual to input parameters. Parafil

uses output parameters to specify the interfaces of modules generated by external

tools:

comp FPMult[wE, wF]<G:1>(l: [G, G+1] W, r: [G, G+1] W) -> (
out: [G+L, G+L] W

) with {
some L

} where W = wE + wF + 1

The new interface uses the existentially-quantified parameter L to express the la-

tency of the module. We to not add parameters for the target frequency or target

board; they are controlled externally by the user. Because the value of this param-

eter is not known, the client code must be abstract with respect to it:

// Perform a*b+c where a, b, c: ['G, 'G+1] 32
M := new FPMul[23, 8];
A := new Add[32];
mul := M<'G>(a, b);
delay := new Register<'G,'G+M::L>(c); // delay c by L cycles
add := Add<'G+M::L>(mul.out, delay.out);

The above implementation accesses latency of the multiplier using the syntax M

::L. The multiplication occurs in the first cycle. However, since the output from

the multiplier L cycles later, the input c is delayed using a register. The addition

is performed in cycle L and the output is available in the same cycle. Parafil’s

type checker will ensure that the implementation is correct no matter what the

value of L is. This means that the design can be proved correct once and used

with any implementation generated by FloPoCo, enabling confident design space

exploration.

169

[G,G+1]

[G+1,G+2]

[G+i,G+i+1]

[G+n,G+n+1]

(a) A shift regis-
ter with availability
intervals for each
wire.

module Shift #(parameter
N = 0) (

input clk, input
[31:0] in,

output [31:0] out);
reg [31:0] r[N-1:0];
generate for (i=0; i < N

; i++)
always @(posedge clk)

if(i == 0) r[0] <=
in;

else sr[i+1] <= r[i
];

endgenerate
assign out = sr[N];
endmodule

(b) Parameterized shift register
in Verilog.

comp Shift[N]<'G:1>(
in: [G, G+1] 32

) -> (out: [G+N, G+N+1] 32)
where N > 0 {

bundle w[N+1]: for<i> [G+i,
G+i+1] 32;

w[0] = in;
for k in 0..N {

R := new Reg[32]; r := R
<'G+k>(w[i]);

w[i+1] = r.out;
}
out = w[N];

}

(c) parameterized shift register in
Parafil.

Figure 8.1: Shift register implementations in Verilog and Parafil. Parafil implemen-
tation provides a timeline type to each value of the bundle which allows it enforce
Filament’s type safety guarantee.

8.1.4 Summary

Parameteric design and integration is a key component in the development of

reusable components in a hardware ecosystem. It enables implementations to ex-

press trade-offs that are key to making components reusable in different contexts.

However, a key challenge is correct integration without the loss of flexibility: pa-

rameters fundamentally influence the timing behavior of modules and require users

to reason about them implicitly. Parafil explicates that relationship and enables

correct composition. It then goes a step further and enables us to express the inter-

faces of modules generated from external tools like FloPoCo and supercharges de-

sign space exploration by ensuring correct integration of all possible design points.

8.2 The Parafil Language

170

Filament’s type system reasons about the correctness of particular instances.

Parafil extends Filament with several new operators to support parameterized

design and extends the type system to be able to statically reason about correctness

of all possible instances.

8.2.1 Parameters

Parafil adds parameter expressions to user-level Filament components. Any loca-

tion that previously contained a concrete number can now instead use a parameter

expression including availability intervals and delays. This allows Parafil to express

parameter-dependent timing, pipelining, and resource reuse. Like Filament, Parafil

is limited to expressing design with input-independent timing behavior.

8.2.2 Parametric Signatures

A shift register (Figure 8.1) is a sequence of registers that delay a signal by N cycles

where N is an input parameter. The Parafil interface (Figure 8.1c) expresses this

as follows:

comp Shift[N]<'G:1>(in: ['G, 'G+1] 32) -> (
out: ['G+N, 'G+N+1] 32) where N > 0 { ... }

The signature introduces the parameter N and uses it in the availability interval

for the out port. It also describes the timing behavior of the module precisely: the

shift register delays the input signal by N cycles and can process new inputs every

cycle (since 'G:1 specifies the delay of 'G as 1). In contrast, the signature in the

Verilog implementation (Figure 8.1b) only captures the bitwidths of the inputs and

outputs. The Parafil signature also uses a where clause to ensure that N > 0. This

171

constraint is checked at compile-time: the module that instantiates Shift must

statically prove that the argument, which can itself be a parameter expression, is

greater than 0. The implementation of Shift assumes that this fact is true and

uses it to discharge its own proofs.

8.2.3 Bundles

Bundles are multi-dimensional arrays where the availability interval a particular

index depends upon the index.

bundle w[N+1]: for<i> ['G+i, 'G+i+1] 32;

The bundle w has N+1 elements and the ith element has the availability [G+ i, G+

i+ 1); w[0] has availability [G,G+ 1), w[2] has availability [G+ 2, G+ 3) and so

on. Availability intervals for bundles are therefore a form of dependent types.

Bundles can be accessed using array-access syntax (w[0]) to get a particular

index, or range-access (w[4..N]) to get a slice. Both syntaxes can be used on the

left side of an assignment and at use locations.

For our shift register implementation, we use a bundle to track the availability

of the output from each register. Figure 8.1a visualizes this: the input is available

in the first cycle, the next wire holds a value in the second cycle, and so on. Bundles

also allow programs to forward-declare values and aid resource reuse in parametric

programs (§8.2.5).

172

8.2.4 Compile-time Constructs

Parafil adds several compile-time constructs to Filament.

Loops. The implementation of the shift register instantiates N registers using a

for loop:

for i in 0..N {
R := new Reg[32]; r := R<'G+i>(w[i]);
w[i+1] = r.out }

The loop body instantiates and invokes a register at time G+i, which is the ith cycle

of the shift register’s execution, uses the input w[i], and connects the output of

the register to w[i+1].

Remaining constructs have standard semantics:

• if-else: Branch on parameter expressions.

• let-bindings: Name parameter expressions.

• assume: Asserted trusted facts that the type checker’s SMT backend cannot

automatically prove.

• Recursive instantiation to express modules such as reduction trees, which

naturally decompose problems into smaller versions of themselves.

8.2.5 Reusing Instances

We lift Filament’s reasoning about inter- and intra-iteration resource conflicts to

Parafil. Filament’s implementation for these checks walks over the entire compo-

nent, collects all invocations associated with an instance, and computes the appro-

173

priate constraints. This approach is infeasible in Parafil since a parametric program

can generate an unknown number of invocations for an instance. We redesign the

check to be local using instance availability intervals:

A := new Add[32] in ['G, 'G+K];

Each instance specifies an availability interval which denotes when the instance

can be invoked. Given this information, the Parafil type checker ensures:

• For each invocation’s scheduling event E with delay d, [E,E+d) is contained

in the availability interval.

• Each pair of invocations is separated by at least d.

Finally, the type-checker ensures that the delay of the containing component’s event

is greater than the length of the instance availability interval. This is because if an

instance is used for K cycles, then the component cannot process new inputs for

at least K cycles. We include a simple pass to infer instance availability intervals

for non-parametric programs for backward compatibility with Filament; extending

this inference to parametric programs is future work.

8.3 Bottom-up parameterization

Input parameters, such as the bitwidth of an adder, allows the instantiating module

to control how a child module is generated, enabling top-down parameterization.

Parafil’s output parameters, enables bottom-up parameterization: during elabora-

tion (§8.4.3), a child module can return parameters which influence the elabora-

tion of other modules in the parent. Parafil’s key insight is that output parameters

correspond to existential types: they hide the implementation details of a module

174

comp FPMult[E,W]<'G:1>
(l: ['G,'G+1] W,

r: ['G,'G+1] W
) -> (

o: ['G+3,'G+4] W)

(a) Concrete interface.

comp FPMult[E,W]<'G:1>
(l: ['G,'G+1] W,

r: ['G,'G+1] W
) -> (o: ['G+L, 'G+L+1] W
) with { some L; }

(b) Abstract interface.

Figure 8.2: Parafil’s output parameters abstract details such as latency and the
type system ensure correct composition.

and force a parent to be abstract with respect to those details. Using this, Parafil

seamless incorporates output parameters into its type system and provides strong

composition guarantees.

8.3.1 Interfaces for Hardware Generators

Interfaces for modules generated by FloPoCo can be captured using input pa-

rameters: the bitwidth of the exponent and the mantissa. However, the target

frequency configuration, which decides the pipelining and latency of the resulting

module, is not easily encapsulated. Figure 8.2a shows the current of integrating

such generated blocks: users pick a specific latency and write HDL glue code with

respect to it.

8.3.2 Stable Interfaces for Generator Composition

Figure 8.2b shows the Parafil approach: using an output parameter L (defined using

the syntax some L), the interface abstracts the latency of the module. The output

is available L cycles after the input is provided but gives no information about its

actual value, which is decided by FloPoCo.

175

M := new FPMult[8, 32];
m := M<'G>(a, b);
A := new Add[8, 32];
a := A<'G+M::L>(m.o, c)

In order to schedule computations that make use

of outputs from such modules, programs need to

use the output parameter access syntax (M::L). The

Parafil program computes a × b + c using the FPMult module. The invocation for

the adder, A, is scheduled at 'G+M::L which depends on the value of M::L. Parafil’s

type-checker treats M::L as abstract and proves that the resulting computation will

be correct for any value of M::L.

A common pattern when using output parameters is threading them up. For

example, the module with the computation itself has an abstract latency which

depends upon the value of M::L. Parafil components specify this using output

parameter assignments:

comp Compute<'G:1>(...) with { some L; } {
...; L <- M::L } // Output param binding

Since the adder is combinational, the abstract latency L for the component is M

::L+0. However, this dependency between the two latencies is not exposed in the

signature; to a user of this component, the latency L is completely abstract. This

abstraction be used for specializing the timing behavior of an implementation based

on input parameters:

comp SmartMul[W]<'G:1>(...) with { some L } {
if W < 4 { M := CombMult[W]; ..; L <- 0; }
else if W < 9 { M := FastMult[W]; ..; L <- 2; }
else { M := SlowMult[W]; ..; L <- 4; }}

8.4 The Parafil Compiler

The Parafil compiler type-checks parametric programs and eliminates all compile-

time abstractions used by the Parafil compiler to generate an unparameterized

176

Filament program.

8.4.1 Type Checking

The Parafil compiler lifts Filament’s guarantees to parameterized programs through

symbolic reasoning. It encodes Filament’s typing constraints (§7.3) as an SMT for-

mula and discharges them using a solver.

Encoding is defined recursively over Parafil statements. It takes a Parafil pro-

gram (Cp), the current path condition (pc), and generates an SMT formulas (P):

encode : Cp → pc → P

Path conditions. Path conditions define the current set of known facts at a

program point and are updated when entering conditionals and loops:

encode(if c { t } else { f }, pc) ≜

encode(t, pc ∧ c) ∧ encode(f, pc ∧ ¬c)

Constraints. During type checking, the encoding function generates assertions

for each program statement.

encode(b0[0..N] = b1[4..P], pc) ≜

pc =⇒ N = (P − 4) ∧ live(b0, 0, N) ⊆ live(b1, 4, P)

For example, for a bundle connection, the constraints to ensure that (1) bundle

sizes match, and (2) that they have the correct availability intervals. Parameters

are treated as unbounded integers which ensures that Parafil’s guarantees extend

177

to all possible designs. Finally, constraints are guarded by the path condition. Once

constructed, the negation of the query is asserted and if the SMT solver returns

UNSAT, the original query is valid.

Output parameters. Within the defining component, constraints on output

parameters are treated as assertions and each parameter assignment must satisfy

them. When a component is instantiated, constraints on the output parameters

are treated as assumptions and the parent module uses them to discharge proofs.

8.4.2 Partial Evaluation

Compiling Parafil components to Filament requires partially evaluating them with

respect to parameters. The partial evaluator: (1) substitutes concrete values for

parameters, (2) evaluates compile-time control flow such as for and if with the re-

sulting concrete expressions, (3) returns bindings for output parameters computed

during evaluation. The result of evaluation is a Filament component and concrete

bindings for output parameters; all input parameters, control-flow, and recursion

is eliminated.

The evaluator takes a Parafil program (Cp) a binding of parameters (s : Var ⇀

N) and returns a concrete Filament program (Cf) and bindings for the output

parameters:

eval : Cp → s → (Cf , s)

178

Parameter expressions. Evaluating parameter expressions requires substitu-

tion which is recursively defined on the grammar of parameter expressions:

subst : p → s → N

subst(x, s) = s(x)

subst(e1 op e2) = apply(op, subst(e1, s), subst(e2, s))

subst(f(e1, . . . , en)) = apply(f, subst(e1, s), . . . , subst(en, s))

The apply evaluates functions and operations using concrete values. After substi-

tution, all parameter expressions are reduced to concrete values.

Control flow. Control flow operators are given standard semantics using a re-

cursive definition of eval:

eval(if e { t } else { f }, s) ≜

if subst(e, s) then eval(t, s) else eval(f, s)

Output parameter bindings. Parameter assignments update the output bind-

ings:

eval(p <- e, s) ≜ empty, {p 7→ subst(e, s)}

The evaluator additionally ensures that all output parameters have exactly one

assignment.

8.4.3 Elaboration

Figure 8.3 shows the process of elaboration for component MulAdd that computes

l × r + c. The inputs (l, r, r) are provided in the first cycle and the output

179

comp MulAdd<'G:1>(
 l: ['G, 'G+1] 32, r: …, c: …
) -> (
 o: ['G+3, 'G+4] 32
) {
 M := new Mul_32<'G>(l, r);
 sh := new Shift_32_3<'G>(c);
 add := new Add<'G+3>(
 m.out, sh.out);
 out = add.out;
}

eval⟦
 comp Shift[W,D]<'G:1>(…),
 {W→32, D→3}
⟧ = Shift_32_3

comp MulAdd<'G:1>(
 l: ['G, 'G+1] 32, r: …, c: …
) -> (
 o: ['G+T, 'G+T+1] 32
) with { some T } {
 M := new Mul[32]; m := M<'G>(l, r);
 sh := new Shift[32, M::L]<'G>(c);
 add := new Add<'G+M::L>(m.out, sh.out);
 out = add.out;
 T := M::L;
}

eval⟦
 comp Mul[W]<'G:1>(…)
 with { some L },
 {W→32}
⟧ = Mul_32, {L→3}

Figure 8.3: Parafil’s elaboration pass compiles parametric programs into Filament
programs. After elaboration, the Filament compiler’s backend lowers the program
to synthesizable hardware.

is available on cycle T, which is abstracted using an output parameter. This is

because the implementation uses a multiplier component with an abstract latency

L. The adder is scheduled using the multiplier’s output parameter M::L and we use

a shift register to delay the input c.

The process of compilation, or elaboration, start with MulAdd and recursively

expands each instance. In Figure 8.3, the pass first encounters the instance Mul

[32] and partially evaluates the definition of Mul with the binding {W 7→ 32}

(Figure 8.3 center) to return a new, unparameterized Filament component Mul_32

along with the binding {M::L 7→ 3}. This binding for M::L added to MulAdd’s

binding. The pass then evaluates Shift[32, M::L] using the concrete value for M

::L and calling eval again. The resulting component (Figure 8.3 right) does not

have any parameters and is a valid Filament program.

External components. External component and cannot be specialized by Parafil’s

partial evaluator; their definition exists only in Verilog and Parafil only has access

to their interface. The elaboration pass substitutes concrete values for all param-

eters to such modules and passes them to the Filament compiler which already

knows how to handle them.

180

config.toml
Signature 1

Signature 2Module 2

Stable Type Interface

Tool

Command-line Interface

Module 1

Figure 8.4: The Parafil gen framework. Tools define stable interfaces for the mod-
ules, used by the type checker, and a command-line interface, used by the elabora-
tion pass.

Order of evaluation. Since components can define instances in any order, the

elaboration pass first topologically sorts the instance list based on output param-

eter definitions and uses. If no topological sort exists, then component is invalid

and cannot be elaborated.

8.4.4 Bundle Elimination

After elaboration, all Parafil programs have explicit assignments to bundle loca-

tions:

comp Foo<'G:1>(in[2]: for<i> ['G+i,'G+i+1] 32) {
bundle A[2]: for<i> ['G, G+1] 32;
A[0] = in[0]; out = A[0]; }

Bundle elimination inlines writes to a particular index into all of its uses. For

bundles used in the signature, it instantiates explicit ports:

comp Foo<'G:1>(in0: ['G, 'G+1] 32),
in1: ['G+1, 'G+2] 32) -> (...) { out = in0 }

181

comp FPExp[E, M]<'G:1>(
X: ['G, 'G+1] W,
Y: ['G, 'G+1] W,

) -> (
R: ['G+L, 'G+L+1] W

) with {
let W = E+M+3;
some L;

}

(a) Type signature.

path = "flopoco"
Module definition
[modules.FPExp]
name = "FPExp"
parameters = ["E", "M"]
cli = "FPExp ${M} ${E}"
name = "FPE${E}_${M}"
Extract output
outputs.L = "depth"

(b) Command-line interface.

Figure 8.5: Interface for the FPExp module generated by FloPoCo. The type signa-
ture uses an output parameter to abstract over the latency. The configuration file
describes how to invoke the tool and extract an output parameter value.

8.5 Composing External Generators

Parafil provides an in-language mechanism to compose designs generated by ex-

ternal generators. This framework, called Parafil gen, allows black box tools to

define stable interfaces for generate-able modules and a command-line interface

to invoke the tool to generate particular instances. The signatures are used by

the type checker (§8.4.1) to ensure correct composition with any generateable in-

stance while the command-line interface is used by the elaboration pass (§8.4.3) to

generate instances. This decoupling between checking and generation allows users

to prove that a design is correctly composed once and explore the design space

repeatedely.

8.5.1 Type Checking

Type signatures for modules generated by tools must account for all possible

implementations. Figure 8.5a shows the interface for the FPExp module. Input pa-

rameters configure the floating-point representation while the output parameter

182

abstracts the latency of the design. Using this component in Parafil is seamless:

users instantiate the component like any other and the type checker ensures that

the composition is correct using the provided interface.

8.5.2 Elaboration

The elaboration pass is responsible for transforming a parameterized Parafil pro-

gram into an unparameterized Filament program. For components generated by

external generators, elaboration needs a mechanism to invoke the tool and gener-

ate a Verilog file. Parafil gen uses tool interfaces which specifies the information

needed to interface with a generator through a command-line interface. Figure 8.5b

overviews the interface for the FPExp module:

• Command-line interface. The cli string describes how to invoke the

FloPoCo binary to generate an FPExp module. The template string uses in-

terpolation to passes parameters as command-line arguments.

• Name generation. The name string describes how the tool generates the

name of the final Verilog module given a set of parameters.

• Bindings for output parameters. The output dictionary maps output

parameters to strings. Given outputs.L = "depth", Parafil will execute the

tool and will look for the line depth = <n> in the standard output stream,

setting the binding of L to n.

Generating an external definition. After executing the tool, Parafil has the

bindings for output parameters and the name and path to the Verilog module. To

generate an unparameterized Filament wrapper, it partially evaluates the signature

183

of module (Figure 8.5a). For example, if the elaboration for FPExp[16,4] generates

the binding {L 7→ 3}, the final Filament signature will be:

ext comp FPE16_4<'G:1>(
clk: 1, X: ['G, 'G+1] 23, Y: ['G, 'G+1] 23

) -> (R: ['G+3, 'G+4] 23);

8.6 Parameterized FFT

Fast Fourier transforms (FFTs) are widely-used signal processing algorithms. Hard-

ware generators for FFTs are widely studied [107, 108] because of the plethora

of use cases and many implementation choices: radix size, circuit reuse, and the

dataflow [45, 122]. We implement several FFT modules using Parafil:

• A Parafil implementation with parametric reuse.

• A second Parafil implementation that uses FloPoCo [46] to generate floating-

point modules.

• An implementation that uses XLS [66] to generate butterfly modules and

reuses them in Parafil code.

8.6.1 FFT Building Blocks

We use the Pease dataflow [122] which provides a regular structure for both the but-

terfly and permutation stages. We design an iterative implementation that shares

subcircuits between stages and a streaming implementation that provides higher

throughput at the cost of higher resource usage. Our implementation uses Parafil’s

184

comp Butterfly[W, E]<'G: II>(
in0[2]: ['G, 'G+II] W,
in1[2]: ['G, 'G+II] W,
twid[2]: ['G, 'G+II] W

) -> (
out0[2]: ['G+L, 'G+L+1] W,
out1[2]: ['G+L, 'G+L+1] W

) with {
some II, L where L >= II > 0;

}

(a) Signature of the butterfly component with abstract latency and
initiation interval.
comp Perm[Stages, W]<'G: 1>(
inp[P][2]: ['G, 'G+1] W

) -> (
out[P][2]: ['G, 'G+1] W

) with { let P = pow2(Stages) }
where Stages > 0, W > 0 {
for i in 0..P/2 {
out{i}{..} = inp{i*2}{..};
out{i+P/2}{..} =

inp{i*2+1}{..}; }}

(b) Permutation component implemented using bundles.
comp BitRev[Stages, W]<'G: 1>(
inp[P][2]: ['G, 'G+1] W

) -> (
out[P][2]: ['G, 'G+1] W

) with { let P = pow2(Stages) }
where Stages > 0, W > 0 {
for j in 0..P {
let br = bit_rev(j, Stages);
out{j}{0..2} = inp{br}{0..2};

}}

(c) Bit reversal implemented using the bit_rev parameter function.

Figure 8.6: Building blocks for the Pease FFT. Complex numbers are represented
as two element bundles.

185

output parameters (§8.3) to abstract modules’ latencies, which lets us seamlessly

replace their implementations.

Given N complex numbers as inputs, the Pease dataflow applies a bit-reversal

followed by a series of stages, each consisting of N/2 parallel butterflies. It then

permutes the output from each stage using the stride permutation to produce the

next stage’s input.

Bit reversal permutation. The Pease FFT requires the inputs to be bit-reversed

before they are passed into the first butterfly stage. Since bit-reversal is a simple

operation, the component (Figure 8.6c) has a combinational implementation.

Butterfly. The butterfly component, given complex inputs a, b and the twiddle

factor ω, computes:

(a, b, ω) 7→ (a+ bω, a− bω)

Figure 8.6a shows the Parafil signature of the butterfly module. Output parameters

model the latency (L) and initiation interval (II), the number of cycles before

the module can start processing new inputs. This lets us transparently swap out

combinational, pipelined, or externally generated implementations of the butterfly.

Stride permutation. The stride permutation stage connects the outputs from

one butterfly stage to the inputs of the next. The computation is:

out(i) =


in(i

2
) i mod 2 = 0

in(i−1+N
2

) otherwise

This permutation is static, so our implementation (Figure 8.6b) uses bundles to

combinationally rewire inputs to outputs.

186

Bit
Rev Perm

Butterfly

Butterfly

Figure 8.7: Iterative FFT that reuses butterfly components within and across
stages.

8.6.2 Iterative FFT

Figure 8.7 overviews the parameterized iterative FFT. The bit-reversal stage trans-

forms the inputs and passes it to the butterflies, which in turn forward their output

to the permutation. The permutation component then sends the inputs back to

the butterflies for the next stage. The design uses exactly one bit-reversal and one

permutation component.

comp IterFFT[N, B=N/2]<'G:L>(
in0[N][2]: ['G, 'G+1] 32) -> (
out[N][2]: ['G+L, 'G+L+1] 32

) with { some L where L > 0 }

The design is parameterized by the number of inputs (N) and the number of butter-

fly components (B), with the default being N/2 to allow fully parallel computation

for a stage of the FFT. If fewer butterflies are provided, the FFT component reuses

them over time and instantiates registers to store the output for a stage till the

output from all butterflies is computed. Finally, the latency and throughput of the

iterative FFT is abstracted using the output parameter (L). This is because our

implementation uses butterfly components with abstract latencies (Figure 8.6a)

and that requires threading the abstract latency through (§8.3.2).

187

FloPoCo integration. The Parafil FFT implements the complex math using

a 5 stage floating-point multiplier and a 5 stage floating-point adder. In order to

explore area-throughput trade-offs, we abstract the interface for the floating-point

modules and use FloPoCo [46] to generate implementations targeting different

frequencies. Because of the gen framework, using FloPoCo generated components

is seamless:

ac := new FPMult[E, M]<'G>(in{0}, twiddle{0});
bd := new FPMult[E, M]<'G>(in{0}, twiddle{1});
re := new FPSub[E, M]<'G+FM::L>(ac.R, bd.R);

The FPMult and FPSub are defined by FloPoCo and are automatically generated

during elaboration (§8.5.2).

Evaluation. Our evaluation of the iterative FFT modules seeks to answer two

questions:

1. Does the parameterized Parafil design offer meaningful area-throughput trade-

offs?

2. Does using FloPoCo modules enable us to explore a larger space of trade-offs?

Figure 8.8 summarizes our results. We generate Parafil point by choosing the num-

ber of butterflies to be {1, 2, 4, 8} and the FloPoCo-Parafil points by additionally

sweeping the target frequency input for FloPoCo from 300–900MHz. The graphs

report post place-and-route resource usage using Vivado 2020.2 against the maxi-

mum frequency for all points that can meet timing at at least 100MHz. The designs

generated by the parameterized Parafil implementation offer area-frequency trade-

off: reducing reuse improves frequency at the cost of resources. The FloPoCo-Parafil

expresses a larger design space: darker points have a higher target frequency input

188

100 150 200 250 300 350
Clock Frequency (MHz)

0

5K

10K

15K

20K

LU
Ts

Parafil Only
Flopoco Baseline
1 Butterflies
2 Butterflies
4 Butterflies
8 Butterflies

(a) Maximum frequency vs LUT usage.

100 150 200 250 300 350
Clock Frequency (MHz)

0

5K

10K

15K

20K

Re
gi

st
er

s

(b) Maximum frequency vs. register usage.

Figure 8.8: Iterative FFT. Darker points have deeper pipelines and shapes represent
different amounts of reuse.

and are more pipelined. These designs can achieve a wider range of frequencies

than the pure Parafil implementation.

8.6.3 Streaming FFT

We implement a streaming FFT as a special case of the iterative FFT that instan-

tiates separate stages and does not reuse butterflies. We integrate FloPoCo and

compare the generated design to FFTs generated by Spiral [107].

189

0 100M 200M 300M 400M 500M
FFT Throughput (Ops/Second)

0

20K

40K

60K

80K

100K

120K

LU
Ts

Flopoco Baseline
Flopoco + Mult Elim
Spiral
Parafil w/ Spiral FP

(a) Latency vs LUT usage.

0 100M 200M 300M 400M 500M
FFT Throughput (Ops/Second)

0

20K

40K

60K

80K

100K

120K

140K

Re
gi

st
er

s

(b) Latency vs. register usage.

Figure 8.9: Streaming FFTs in Parafil and Spiral compared to optimized designs.

Initial comparison. Figure 8.9 reports usage against throughput, computed

as ratio of frequency over initiation interval. Throughput is an application-level

metric that allows us to compare different FFT implementation. Between FloPoCo-

Parafil designs and Spiral, the latter does strictly better because Spiral implements

application-specific FFT optimizations that our implementation does not yet repli-

cate.

Eliminating unit multiplies. Spiral opportunistically eliminate floating-point

multiplier when the twiddle factors are constants (1 or −i). This changes the

190

latency of butterfly modules in some stages. Parafil’s output parameters abstract

the latency and make it easy to express this optimization:

if is_one(Twid) { // is 1
.. // Forward inputs
L <- 0; // Purely combinational

} else if is_i(Twid) { // is -i?
.. // Negate and forward inputs
L <- 0; // Purely combinational

} else { // floating-point multiplier needed
M := new FPMul; ...; L <- M::L; // Multi-cycle

}

The output parameter L reflects the component’s conditional latency: combina-

tional (0) for unit factors and sequential (the same as the multiplier) otherwise.

This abstraction over L is a unique feature of Parafil: clients do not provide this la-

tency parameter to instantiate OptMul; instead, they adapt to the latency that the

component reports. This abstraction supports the optimization efficiently while

keeping implementation details hidden. Figure 8.9 summarizes the results: register

usage goes down by 28.9%, LUT usage by 25.7%, and latency by 27.8%, bringing

us closer to the Spiral designs.

Integrating Spiral. The Spiral implementation still outperforms the Parafil-

FloPoCo integration because its modules are mapped onto DSP blocks more often.

Figure 8.9 shows that if we replace some Parafil blocks with the Spiral ones, the

resulting design is competitive. A better approach, however, is to simply define an

interface for Spiral FFTs and import them in Parafil:

comp FFT[N]<'G: II>(
X[W*2][N/W]: for<_, i> ['G+i, 'G+i+1] 32

) -> (
Y[W*2][N/W]: for<_, i> ['G+L+i, 'G+L+i+1] 32

) with {
some II, L where L >= II > 0;
some W where N % W == 0; // streaming width

} where N > 0;

191

The interface for Spiral modules abstracts over the latency, initiation interval, and

the streaming width (W) using output parameters. For N 6= W , where N is the

number of points, this means that inputs are provided over multiple cycles enabling

resource savings.

8.7 Enriching High-Level Design

Heterogeneous generator composition, enabled by Parafil abstractions, can enable

new hardware design flows where high- and low-level programming models for

hardware design can be combined. We prototype such a flow by combining Google’s

XLS toolchain with Parafil and show how it offers the best of both worlds: XLS

enables rapid design of efficient, pipelined datapaths, and Parafil enables precise

and correct resource reuse.

8.7.1 DSLX Language

XLS [66] represents Google’s continued investment in high-level programming

models for hardware after using high-level synthesis tools to design production

chips [130]. XLS provides an expression-oriented functional language called DSLX

to express computations which are automatically pipelined and compiled to syn-

thesizable hardware.

DSLX programs look like standard imperative programs:

pub fn ALU<E:u32, M:u32>(
left: Float<E, M>, right: Float<E, M>, op: u1

) -> Float<E, M> {
if (op == 0) { float::add(l, r) }
else { float::mul(l, r) }

192

}

This implements a ALU parameterized on the floating-point representation. Un-

like HDL programs—which instantiate circuits and schedule computations—DSLX

use function calls and control flow to express the design. However, this high-level

representation has drawbacks: XLS cannot currently express resource reuse which

means it cannot express designs like Parafil’s iterative FFT (Figure 8.7).

8.7.2 Integrating with Parafil-gen

Unlike FloPoCo, XLS is a programming language and can therefore support arbi-

trary computation instead of a limited set of hardware blocks. We define a wrapper

script that integrates XLS to Parafil gen’s block-based interface. The script does

the following:

• Maps names of blocks to XLS template programs.

• Given an XLS block and a set of parameters, uses a preprocessor to replace

the value of the parameters.

• Runs the XLS toolchain and returns a Verilog module.

For each module, we provide a type signature and an entry in the configuration

file (§8.5):

pub fn A(
x: Float<E, M>

) -> Float<E, M>;

comp A[E, M]<'G:1>(
x: ['G, 'G+1] E+M+1

) -> (
out: ['G, 'G+1] E+M+1

) with { some L }

The XLS signature above is invalid since E and M are unbound. The prepro-

cessor in our XLS scripts replaces concrete values for them before invoking the

193

pub fn Butterfly(
a_r: Float<E, M>,
a_i: Float<E, M>,
b_r: Float<E, M>,
b_i: Float<E, M>,
t_r: Float<E, M>,
t_i: Float<E, M>

) -> (
Float<E, M>,
Float<E, M>,
Float<E, M>,
Float<E, M>)

(a) XLS signature.

comp Butterfly[E, M]<'G:1>(
a_r: ['G, 'G+1] W,
a_i: ['G, 'G+1] W,
b_r: ['G, 'G+1] W,
b_i: ['G, 'G+1] W,
t_r: ['G, 'G+1] W,
t_i: ['G, 'G+1] W

) -> (
out: ['G+L, 'G+L+1] 4*W

) with {
let W = E+M+1;
some L where L >= 1; }

(b) Parafil signature.

Figure 8.10: Butterfly module in XLS.

XLS toolchain. The Parafil interface for this module has both input parameters—

which provide bindings for E and M—and an output parameter—which abstracts

the latency.

8.7.3 Iterative FFT with XLS

XLS does not support resource reuse and therefore cannot express an iterative FFT.

Instead, we use XLS to design a butterfly module (§8.6.1) and use Parafil code to

express the resource reuse. Figure 8.10a shows the XLS interface for the module: it

takes real and imaginary parts of the inputs and the twiddle factor. Figure 8.10b

explicates its timing behavior: all inputs are accepted in the first cycle and the

output is available after L cycles, where L is determined by XLS based on the

user-specified pipeline depth.

DSLX’s expression-based representation makes it easy to express the butterfly

computation:

let re = sub(mul(a_r, t_r), mul(b_i, t_i));
let img = ...;
// in0 + (w * in1)

194

let o0_r = add(a_r, re); let o0_i = add(a_i, im);
// in0 - (w * in1)
let o1_r = sub(a_r, re); let o1_i = sub(a_i, im);
return (o0_r, o0_i, o1_r, o1_i)

Expressing reuse. Figure 8.10b does not match the interface of the butterfly

module used in our iterative FFT (Figure 8.6a). We define a wrapper module that

exposes the same interface as the iterative FFT’s butterfly and explicitly forward

signals to and from bundles. This allows us to transparently replace our butterfly

module with XLS. Furthermore, it is the only change needed to express butterfly

reuse. The iterative design is abstract with respect to the butterfly implementation

and can therefore reuse any implementation, including the XLS implementation;

our job is done.

Figure 8.11 summarizes the results of exploring the design space of the com-

bined Parafil-XLS iterative FFT. We select between reuse factors in {1, 2, 4, 8} and

number of pipeline stages in XLS from {5, 10, . . . , 45}. We report LUT and register

usage against the maximum frequency and remove any design points that cannot

meet timing at 100MHz. As the amount of reuse decreases and number of stages

increase, designs achieve higher frequencies and require more resources.

195

100 150 200 250 300
Clock Frequency (MHz)

0

10K

20K

30K

40K

LU
Ts

XLS Baseline
1 Butterflies
2 Butterflies
4 Butterflies
8 Butterflies

(a) FFT Throughput vs LUT usage.

100 150 200 250 300
Clock Frequency (MHz)

0

1K

2K

3K

4K

5K

6K

Re
gi

st
er

s

(b) FFT Throughput vs. register usage.

Figure 8.11: Parafil FFTs using XLS butterflies. Darker points have more pipeline
stages and different shapes represent different amount of sharing.

196

CHAPTER 9

CONCLUSION

9.1 Retrospective

This dissertation examined programming models for hardware design at various

levels of abstraction and demonstrated that reasoning about time can enable tools

to provide modular and efficient abstractions. Since publication, each system has

seen adoption and impact in different ways:

Calyx (§§ 4–6). Calyx demonstrated that intermediate languages can provide

both scalable compiler analyses and precise hardware specification through its

novel group and control abstractions. Group-like abstractions have become com-

mon in compiler intermediate languages (ILs) published since [103, 160, 163]. The

system has gained significant traction, serving as the foundation for multiple fron-

tend compilers targeting languages like Halide [69], TVM [30], and C++, as well as

hardware generators [26]. Additionally, Calyx has been integrated into the LLVM

CIRCT infrastructure [153] and enabled novel debugging [17] and profiling capa-

bilities for hardware accelerators.

Filament (§§ 7 and 8). While contemporary projects attempted to provide

reasoning about module latencies [103, 142], Filament was the first to provide

holistic reasoning about a module’s pipelining behavior and enabled modular com-

position of pipelined circuits. Filament’s type system, being built on a simple

structural HDL, was broadly applicable and has since influenced the design of

other systems [66, 81].

197

Dahlia (§3). Dahlia demonstrated the predictability challenges of high-level

synthesis (HLS) tools and rectified them using a novel substructural type system

to reason about constraints of circuits within high-level languages. Subsequent

systems added affine reasoning for circuits [142] and used Dahlia’s notion of logical

timesteps [164] in related problem domains.

9.2 Open Questions

The demand for specialized accelerators, coupled with customized compiler and

system stacks, will keep growing in the next decade. Fundamental ideas in pro-

gramming systems, such as the separation between architecture and programs,

need to be re-examined to enable next-generation systems to effectively utilize ac-

celerators. Several fundamental challenges in accelerator design and programming

are fertile grounds for future research:

Abstractions for accelerator programming While accelerators offer tremen-

dous potential, their utility hinges on effective programming interfaces. Modern

programming models must elegantly expose critical low-level features like memory

hierarchies [37, 90, 123] while enabling crucial optimizations such as computation-

communication overlap [82]. The success of accelerator architectures fundamentally

depends on their programmability.

Designing programmable accelerators Traditional high-level synthesis has

primarily targeted fixed-function accelerators. However, real-world applications de-

mand flexible, programmable solutions to justify the substantial investment in ac-

198

celerator development. The challenge lies in developing programming abstractions

that can specify and generate programmable hardware accelerators. Previous re-

search in ASIPs [15, 38, 47, 65] laid the groundwork for processor generation but

struggled with complex architectural features. Recent advances in compiler syn-

thesis [150] and integrated toolchains [51] show promise in limited domains, but

generalizing these approaches remains an open challenge.

Rethinking the RTL abstraction The register transfer level (RTL) abstrac-

tion, while foundational to hardware design, warrants re-examination. As demon-

strated by Filament (§7), elevating timing behavior to the source level can prevent

entire categories of hardware bugs. Future hardware description languages (HDLs)

must enable reasoning about critical properties like deadlock freedom [156], con-

current behavior [109], and security guarantees [165] without compromising per-

formance. Drawing inspiration from Rust’s success in systems programming, we

need innovative language designs, type systems, and compilation strategies to rev-

olutionize hardware development.

For accelerators to become ubiquitous, designers have to take a cross-stack

view of the challenges, designing abstractions to program them and to optimize

them down to the level of the last transistor. Researchers have the opportunity to

provide a firm foundation for languages and machines that will come to define the

next generation of computing.

199

BIBLIOGRAPHY

[1] Amaranth: A modern hardware definition language and toolchain based on

python. URL https://github.com/amaranth-lang/amaranth.

[2] Design Compiler. URL https://archive.is/BW7Yj.

[3] Polybench/c 4.2.1. URL https://github.com/MatthiasJReisinger/

PolyBenchC-4.2.1.

[4] SpinalHDL: Scala based HDL. URL https://github.com/SpinalHDL/

SpinalHDL.

[5] Ali E. Abdallah and John Hawkins. Formal behavioural synthesis of Handel-

C parallel hardware implementations from functional specifications. In

Hawaii International Conference on System Sciences (HICSS), 2003.

[6] F.E. Allen and J. Cocke. A Catalogue of Optimizing Transformations. IBM

Thomas J. Watson Research Center, 1971.

[7] Amazon Web Services. Amazon EC2 F1 Instances. https://aws.amazon.

com/ec2/instance-types/f1/.

[8] Gene M Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the spring joint computer

conference, 1967.

[9] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain,

Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski,

et al. Pytorch 2: Faster machine learning through dynamic python bytecode

transformation and graph compilation. In ACM International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2024.

200

https://github.com/amaranth-lang/amaranth
https://archive.is/BW7Yj
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

[10] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,

David Walker, and David Wentzlaff. Enabling programmable transport pro-

tocols in high-speed NICs. In USENIX Symposium on Networked System

Design and Implementation (NSDI), 2020.

[11] IEEE Standards Association. Ieee standard for systemverilog–unified hard-

ware design, specification, and verification language, 2018.

[12] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. CλaSH:

Structural descriptions of synchronous hardware using Haskell. In Euromicro

Conference on Digital System Design: Architectures, Methods and Tools, 2010.

doi: 10.1109/DSD.2010.21.

[13] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Water-

man, Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: con-

structing hardware in a Scala embedded language. In Design Automation

Conference (DAC), 2012. doi: 10.1145/2228360.2228584.

[14] Henry G. Baker. “Use-once” variables and linear objects: Storage manage-

ment, reflection and multi-threading. SIGPLAN Notices, 1995.

[15] Mario R Barbacci. Instruction set processor specifications (isps): The nota-

tion and its applications. IEEE Transactions on Computers, 1981.

[16] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R Wil-

son. Hoard: A scalable memory allocator for multithreaded applications.

ACM Sigplan Notices, 2000.

[17] Griffin Berlstein, Rachit Nigam, Christophe Gyurgyik, and Adrian Sampson.

Stepwise debugging for hardware accelerators. In ACM International Con-

201

ference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2023. doi: 10.1145/3575693.3575717.

[18] J Bernardy, Mathieu Boespflug, Ryan Newton, Simon L. Peyton Jones, and

Arnaud Spiwack. Linear Haskell: practical linearity in a higher-order poly-

morphic language. In ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), 2017.

[19] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E

Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded

runtime system. Journal of parallel and distributed computing, 1996.

[20] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-

nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Vargh-

ese, et al. P4: Programming protocol-independent packet processors. ACM

SIGCOMM Computer Communication Review, 2014.

[21] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. The essence of

bluespec: a core language for rule-based hardware design. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

2020. doi: 10.1145/3385412.3385965.

[22] Robert K Brayton, Gary D Hachtel, and Alberto L Sangiovanni-Vincentelli.

Multilevel logic synthesis. Proceedings of the IEEE, 1990.

[23] Stephen Brookes. A semantics for concurrent separation logic. In Interna-

tional Conference on Concurrency Theory. Springer, 2004.

[24] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-

moona, Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp:

202

high-level synthesis for FPGA-based processor/accelerator systems. In In-

ternational Symposium on Field-Programmable Gate Arrays (FPGA), 2011.

[25] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-

moona, Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp:

High-level synthesis for FPGA-based processor/accelerator systems. In In-

ternational Symposium on Field-Programmable Gate Arrays (FPGA), 2011.

doi: 10.1145/1950413.1950423.

[26] Benjamin Carleton. A numerics frontend for calyx. URL https://github.

com/cucapra/calyx-nums.

[27] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli.

Theory of latency-insensitive design. 2001.

[28] Jared Casper and Kunle Olukotun. Hardware acceleration of database op-

erations. In International Symposium on Field-Programmable Gate Arrays

(FPGA), 2014.

[29] Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia

Dai, and Zhiru Zhang. Allo: A programming model for composable accel-

erator design. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2024.

[30] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,

Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al.

TVM: An automated end-to-end optimizing compiler for deep learning. In

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2018.

203

https://github.com/cucapra/calyx-nums
https://github.com/cucapra/calyx-nums

[31] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. Diannao: A small-footprint high-throughput ac-

celerator for ubiquitous machine-learning. ACM SIGARCH Computer Ar-

chitecture News, 2014.

[32] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE journal of solid-state circuits, 2016.

[33] Jianyi Cheng, Lana Josipović, George A. Constantinides, Paolo Ienne, and

John Wickerson. Combining dynamic & static scheduling in high-level syn-

thesis. In International Symposium on Field-Programmable Gate Arrays

(FPGA), 2020. doi: 10.1145/3373087.3375297.

[34] Jianyi Cheng, John Wickerson, and George A. Constantinides. Finding and

finessing static islands in dynamically scheduled circuits. In International

Symposium on Field-Programmable Gate Arrays (FPGA), 2022. doi: 10.

1145/3490422.3502362.

[35] Jianyi Cheng, Estibaliz Fraca, John Wickerson, and George A. Constan-

tinides. Balancing static islands in dynamically scheduled circuits using

continuous petri nets. IEEE Transactions on Computers, 2023. doi:

10.1109/TC.2023.3292590.

[36] Yaohan Chu. Introducing CDL. Computer, 1974.

[37] Eric S Chung, James C Hoe, and Ken Mai. CoRAM: an in-fabric memory

architecture for FPGA-based computing. In International Symposium on

Field-Programmable Gate Arrays (FPGA), 2011.

204

[38] Nathan Clark, Hongtao Zhong, and Scott Mahlke. Processor acceleration

through automated instruction set customization. In IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO). IEEE, 2003.

[39] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.

Deny capabilities for safe, fast actors. In International Workshop on Pro-

gramming Based on Actors, Agents, and Decentralized Control (AGERE!),

2015.

[40] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood.

A Pythonic approach for rapid hardware prototyping and instrumentation.

In International Conference on Field-Programmable Logic and Applications

(FPL), 2017. doi: 10.23919/FPL.2017.8056860.

[41] J. Cong and Zhiru Zhang. An efficient and versatile scheduling algorithm

based on SDC formulation. In Design Automation Conference (DAC), 2006.

doi: 10.1145/1146909.1147025.

[42] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Platform-based behavior-

level and system-level synthesis. In International SoC Conference, 2006.

[43] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-

level synthesis for FPGAs: From prototyping to deployment. 2011.

[44] Jason Cong and Jie Wang. Polysa: Polyhedral-based systolic array auto-

compilation. In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), 2018. doi: 10.1145/3240765.3240838.

[45] James W Cooley and John W Tukey. An algorithm for the machine calcula-

tion of complex fourier series. Mathematics of computation, 1965.

205

[46] Florent De Dinechin and Bogdan Pasca. Designing custom arithmetic data

paths with flopoco. IEEE Design & Test of Computers, 2011.

[47] Hugo De Man, Jan Rabaey, Paul Six, and Luc Claesen. Cathedral-II: A sili-

con compiler for digital signal processing. IEEE Design & Test of Computers,

1986.

[48] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest

Bassous, and Andre R LeBlanc. Design of ion-implanted mosfet’s with very

small physical dimensions. IEEE Journal of solid-state circuits, 1974.

[49] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek.

Terra: a multi-stage language for high-performance computing. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation

(PLDI), 2013.

[50] Robert Dockins. Operational refinement for compiler correctness. PhD thesis,

Princeton University, 2012.

[51] Caleb Donovick, Ross Daly, Jackson Melchert, Lenny Truong, Priyanka

Raina, Pat Hanrahan, and Clark Barrett. PEak: A single source of truth for

hardware design and verification. arXiv preprint arXiv:2308.13106, 2023.

[52] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,

Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat

Hanrahan. Type-directed scheduling of streaming accelerators. In ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI), 2020. doi: 10.1145/3385412.3385983.

[53] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-

206

alingam, and Doug Burger. Dark silicon and the end of multicore scaling. In

International Symposium on Computer Architecture (ISCA), 2011.

[54] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishna-

murthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. The racket

manifesto. In Summit on Advances in Programming Languages. Schloss-

Dagstuhl-Leibniz Zentrum für Informatik, 2015.

[55] Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon Davidmann.

Verilog hdl and its ancestors and descendants. Proceedings of the ACM on

Programming Languages, (HOPL), 2020.

[56] Peter L Flake, Gerry Musgrave, and Mike Shorland. The hilo logic simulation

language. 1975.

[57] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all

you need. In European Symposium on Programming (ESOP), 2006.

[58] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,

Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams,

Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa

Woods, Sitaram Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S.

Chung, and Doug Burger. A configurable cloud-scale DNN processor for

real-time AI. In International Symposium on Computer Architecture (ISCA),

2018.

[59] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna

Das, David Blaauw, and Satish Narayanasamy. Genax: A genome sequencing

accelerator. In International Symposium on Computer Architecture (ISCA).

IEEE, 2018.

207

[60] Sameh Galal, Ofer Shacham, John S Brunhaver II, Jing Pu, Artem Vassiliev,

and Mark Horowitz. Fpu generator for design space exploration. In IEEE

Symposium on Computer Arithmetic. IEEE, 2013.

[61] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John

Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, et al. Gemmini:

An agile systolic array generator enabling systematic evaluations of deep-

learning architectures. arXiv preprint arXiv:1911.09925, 2019.

[62] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav

Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, et al. Gem-

mini: Enabling systematic deep-learning architecture evaluation via full-stack

integration. In Design Automation Conference (DAC). IEEE, 2021.

[63] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic:

A modular approach to polynomial-time computability. Theoretical Com-

puter Science, 97(1):1–66, April 1992.

[64] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony

Nowatzki, Nathan Beckmann, and Brandon Lucia. Riptide: A programmable,

energy-minimal dataflow compiler and architecture. In IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO). IEEE, 2022.

[65] David Goodwin and Darin Petkov. Automatic generation of application

specific processors. In International conference on Compilers, architecture

and synthesis for embedded systems, 2003.

[66] Google. XLS: Accelerated computing at google. URL https://google.

github.io/xls/.

208

https://google.github.io/xls/
https://google.github.io/xls/

[67] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,

and Joe Duffy. Uniqueness and reference immutability for safe parallelism.

In ACM SIGPLAN Conference on Object Oriented Programming, Systems,

Languages and Applications (OOPSLA), 2012.

[68] Colin S. Gordon, Michael D. Ernst, and Dan Grossman. Rely-guarantee

references for refinement types over aliased mutable data. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

2013.

[69] Sergi Granell Escalfet. Accelerating halide on an FPGA. Master’s thesis,

Universitat Politècnica de Catalunya, 2023.

[70] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,

and James Cheney. Region-based memory management in Cyclone. In ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI), 2002.

[71] S Gupta, Renu Gupta, Nikil Dutt, and Alex Nicolau. SPARK: A Parallelizing

Approach to the High-Level Synthesis of Digital Circuits. January 2004.

[72] Berkeley hardfloat authors. Berkeley hardware floating-point units. URL

https://github.com/ucb-bar/berkeley-hardfloat.

[73] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley,

Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanra-

han. Darkroom: Compiling high-level image processing code into hardware

pipelines. 2014. doi: 10.1145/2601097.2601174.

[74] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark

209

https://github.com/ucb-bar/berkeley-hardfloat

Horowitz, and Pat Hanrahan. Rigel: Flexible multi-rate image processing

hardware. 2016. doi: 10.1145/2897824.2925892.

[75] John L. Hennessy and David A. Patterson. A new golden age for computer

architecture. CommunicationsoftheACM, 2019.

[76] Frederick J Hill. Introducing AHPL. Computer, 1974.

[77] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Com-

puter, 2008.

[78] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE

Std 1364-2005 (Revision of IEEE Std 1364-2001), 2006.

[79] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-

2008 (Revision of IEEE Std 1076-2002), Jan 2009.

[80] Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,

Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson,

and Jonathan Bachrach. Reusability is FIRRTL ground: Hardware construc-

tion languages, compiler frameworks, and transformations. In IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2017.

[81] Jane Street. HardCaml: Register transfer level hardware design in OCaml.

URL https://github.com/janestreet/hardcaml.

[82] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet,

Saeed Maleki, Youshan Miao, Madanlal Musuvathi, Todd Mytkowicz, and

Olli Saarikivi. Breaking the computation and communication abstraction

barrier in distributed machine learning workloads. In Proceedings of the

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, 2022.

210

https://github.com/janestreet/hardcaml

[83] Lana Josipoviundefined, Radhika Ghosal, and Paolo Ienne. Dynamically

scheduled high-level synthesis. In International Symposium on Field-

Programmable Gate Arrays (FPGA), 2018.

[84] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark,

Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir

Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,

C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Ju-

lian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khai-

tan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,

Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon

MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-

jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-

nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir

Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson,

Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter

Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analy-

sis of a Tensor Processing Unit. In International Symposium on Computer

Architecture (ISCA), 2017.

[85] Hyegang Jun, Hanchen Ye, Hyunmin Jeong, and Deming Chen. Autoscaledse:

A scalable design space exploration engine for high-level synthesis. ACM

Transactions on Reconfigurable Technology and Systems, 2023.

[86] Caleb Kim, Pai Li, Anshuman Mohan, Andrew Butt, Adrian Sampson, and

211

Rachit Nigam. Unifying static and dynamic intermediate languages for ac-

celerator generators. In ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages and Applications (OOPSLA), 2024. doi:

10.1145/3689790.

[87] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin,

Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kan-

war, Wojciech Matusik, et al. Simit: A language for physical simulation. ACM

Transactions on Graphics (TOG), 2016.

[88] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman

Amarasinghe. The tensor algebra compiler. Proceedings of the ACM on

Programming Languages, (OOPSLA), 2017.

[89] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Ste-

fan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Chris-

tos Kozyrakis, and Kunle Olukotun. Spatial: A language and compiler for

application accelerators. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2018. doi: 10.1145/3192366.

3192379.

[90] Rakesh Komuravelli, Matthew D Sinclair, Johnathan Alsop, Muhammad

Huzaifa, Maria Kotsifakou, Prakalp Srivastava, Sarita V Adve, and Vikram S

Adve. Stash: Have your scratchpad and cache it too. ACM SIGARCH Com-

puter Architecture News, 2015.

[91] David C Ku and Giovanni De Micheli. Hardware C: a language for hardware

design. Computer Systems Laboratory, Stanford University, 1988.

212

[92] Hsiang-Tsung Kung. Why systolic architectures? IEEE Computer, 1982. doi:

10.1109/MC.1982.1653825.

[93] Tadahiro Kuroda. CMOS design challenges to power wall. In International

Microprocesses and Nanotechnology Conference. IEEE, 2001.

[94] Y.-H. Lai, H. Rong, S. Zheng, W. Zhang, X. Cui, Y. Jia, J. Wang, B. Sullivan,

Z. Zhang, Y. Liang, Y. Zhang, J. Cong, N. George, J. Alvarez, C. Hughes,

and P. Dubey. SuSy: A programming model for productive construction of

high-performance systolic arrays on FPGAs. In IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2020.

[95] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou,

Jason Cong, and Zhiru Zhang. HeteroCL: A multi-paradigm programming in-

frastructure for software-defined reconfigurable computing. In International

Symposium on Field-Programmable Gate Arrays (FPGA), 2019.

[96] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-

long program analysis & transformation. In International Symposium on

Code Generation and Optimization (CGO), 2004.

[97] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and

Oleksandr Zinenko. MLIR: Scaling compiler infrastructure for domain spe-

cific computation. In International Symposium on Code Generation and

Optimization (CGO), 2021. doi: 10.1109/CGO51591.2021.9370308.

[98] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry.

Algorithmica, 1991.

213

[99] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,

Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly flexible

and high performance network processing with reconfigurable hardware. In

Proceedings of the ACM SIGCOMM Conference, 2016.

[100] Katie Lim, Matthew Giordano, Theano Stavrinos, Irene Zhang, Jacob Nelson,

Baris Kasikci, and Thomas Anderson. Beehive: A flexible network stack for

direct-attached accelerators. In IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 2024.

[101] Derek Lockhart, Gary Zibrat, and Christopher Batten. PyMTL: A uni-

fied framework for vertically integrated computer architecture research. In

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2014.

doi: 10.1109/MICRO.2014.50.

[102] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinear-

ities improve neural network acoustic models. In International Conference

on Machine Learning (ICML), 2013.

[103] Kingshuk Majumder and Uday Bondhugula. Hir: An mlir-based intermediate

representation for hardware accelerator description, 2021.

[104] Paolo Mantovani, Robert Margelli, Davide Giri, and Luca P Carloni. HL5: a

32-bit RISC-V processor designed with high-level synthesis. In IEEE Custom

Integrated Circuits Conference (CICC). IEEE, 2020.

[105] Nicholas D. Matsakis and Felix S. Klock, II. The Rust language. In High

Integrity Language Technology (HILT), 2014.

[106] Carver Mead and Lynn Conway. Introduction to VLSI systems, 1980.

214

[107] Peter Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Com-

puter generation of hardware for linear digital signal processing transforms.

ACM Transactions on Design Automation of Electronic Systems, 2012. doi:

10.1145/2159542.2159547.

[108] VM Milovanović and ML Petrović. A highly parametrizable chisel HCL

generator of single-path delay feedback FFT processors. In International

Conference on Microelectronics (MIEL). IEEE, 2019.

[109] Fabrizio Montesi. Choreographic programming. IT-Universitetet i Køben-

havn, 2014.

[110] Gordon E Moore. Cramming more components onto integrated circuits. Pro-

ceedings of the IEEE, 1998.

[111] Kevin E. Murray and Vaughn Betz. Quantifying the cost and benefit of

latency insensitive communication on FPGAs. In International Symposium

on Field-Programmable Gate Arrays (FPGA), 2014. doi: 10.1145/2554688.

2554786.

[112] Mayur Naik, Alexander Aiken, and John Whaley. Effective static race de-

tection for Java. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2006.

[113] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. Netfpga: reusable

router architecture for experimental research. In Proceedings of the ACM

workshop on Programmable routers for extensible services of tomorrow, 2008.

[114] Matthias Nickel and Diana Göhringer. A survey on architectures, hard-

ware acceleration and challenges for in-network computing. ACM Trans.

215

Reconfigurable Technol. Syst., 2024. doi: 10.1145/3699514. URL https:

//doi.org/10.1145/3699514.

[115] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore

Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. Pre-

dictable accelerator design with time-sensitive affine types. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation

(PLDI), 2020. doi: 10.1145/3385412.3385974.

[116] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. A compiler

infrastructure for accelerator generators. In ACM International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2021. doi: 10.1145/3445814.3446712.

[117] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian Sampson.

Modular hardware design with timeline types. In ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI), 2023.

doi: 10.1145/3591234.

[118] Rachit Nigam, Ethan Gabizon, Edmund Lam, and Adrian Sampson. Correct

and compositional hardware generators. 2024. doi: arXiv:2401.02570.

[119] Rishiyur Nikhil. Bluespec System Verilog: Efficient, correct RTL from high

level specifications. In Conference on Formal Methods and Models for Co-

Design (MEMOCODE), 2004. doi: 10.1109/MEMCOD.2004.1459818.

[120] Rishiyur Nikhil. Bluespec System Verilog: efficient, correct RTL from high

level specifications. In Conference on Formal Methods and Models for Co-

Design (MEMOCODE), 2004.

216

https://doi.org/10.1145/3699514
https://doi.org/10.1145/3699514

[121] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89,

2020. URL https://developer.nvidia.com/cuda-toolkit.

[122] Marshall C. Pease. An adaptation of the fast fourier transform for parallel

processing. Journal of the ACM, 1968. doi: 10.1145/321450.321457.

[123] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kar-

tik Hegde, Rangharajan Venkatesan, Stephen W Keckler, Christopher W

Fletcher, and Joel Emer. Buffets: An efficient and composable storage idiom

for explicit decoupled data orchestration. In Proceedings of the International

Conference on Architectural Support for Programming Languages and Oper-

ating Systems, 2019.

[124] Christian Pilato and Fabrizio Ferrandi. Bambu: A modular framework for

the high level synthesis of memory-intensive applications. In International

Conference on Field-Programmable Logic and Applications (FPL), 2013. doi:

10.1109/FPL.2013.6645550.

[125] Stèphane Pouget, Louis-Noël Pouchet, and Jason Cong. Enhancing high-

level synthesis with automated pragma insertion and code transformation

framework. arXiv preprint arXiv:2405.03058, 2024.

[126] Raghu Prabhakar and Sumti Jairath. Sambanova sn10 rdu: Accelerating

software 2.0 with dataflow. In 2021 IEEE Hot Chips 33 Symposium (HCS),

pages 1–37. IEEE, 2021.

[127] Polyvios Pratikakis, Jeffrey S. Foster, and Michael W. Hicks. LOCKSMITH:

context-sensitive correlation analysis for race detection. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

2006.

217

https://developer.nvidia.com/cuda-toolkit

[128] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan

Ragan-Kelley, and Mark Horowitz. Programming heterogeneous systems

from an image processing DSL. 2017. doi: 10.1145/3107953.

[129] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,

Frédo Durand, and Saman P. Amarasinghe. Halide: A language and compiler

for optimizing parallelism, locality, and recomputation in image processing

pipelines. In ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), 2013. doi: 10.1145/2491956.2462176.

[130] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,

Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasub-

ramanian, Sandeep Bhatia, Prakash Chauhan, et al. Warehouse-scale video

acceleration: co-design and deployment in the wild. In ACM International

Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), 2021.

[131] Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael

Jones, Douglas Orr, and Richard Sanzi. Mach: a foundation for open systems

(operating systems). In Proceedings of the Second Workshop on Workstation

Operating Systems. IEEE, 1989.

[132] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and

David Brooks. MachSuite: Benchmarks for accelerator design and customized

architectures. In IEEE International Symposium on Workload Characteriza-

tion (IISWC), 2014.

[133] John C Reynolds. Separation logic: A logic for shared mutable data struc-

tures. In IEEE Symposium on Logic in Computer Science. IEEE, 2002.

218

[134] Tiark Rompf and Martin Odersky. Lightweight modular staging: A prag-

matic approach to runtime code generation and compiled DSLs. 2010.

[135] Amit Sabne. XLA: Compiling machine learning for peak performance. Google

Res, 2020.

[136] Sameer D Sahasrabuddhe, Hakim Raja, Kavi Arya, and Madhav P Desai.

AHIR: A hardware intermediate representation for hardware generation from

high-level programs. In International Conference on VLSI Design (VLSID),

2007.

[137] Nikola Samardzic, Simon Langowski, Srinivas Devadas, and Daniel Sanchez.

Accelerating zero-knowledge proofs through hardware-algorithm co-design.

In IEEE/ACM International Symposium on Microarchitecture (MICRO).

IEEE, 2024.

[138] Colin Schmidt and Adam Izraelevitz. A fast parameterized sha3 accelerator.

In Technical Report. EECS Department, University of California, 2015.

[139] Ofer Shacham, Megan Wachs, Andrew Danowitz, Sameh Galal, John

Brunhaver, Wajahat Qadeer, Sabarish Sankaranarayanan, Artem Vassiliev,

Stephen Richardson, and Mark Horowitz. Avoiding game over: Bringing de-

sign to the next level. In Design Automation Conference (DAC), 2012.

[140] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony

Nowatzki, and Arrvindh Shriraman. µir: An intermediate representation for

transforming and optimizing the microarchitecture of application accelera-

tors. In IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), 2019.

219

[141] Rohit Sinha and Hiren D Patel. synASM: A high-level synthesis framework

with support for parallel and timed constructs. 2012.

[142] Frans Skarman and Oscar Gustafsson. Spade: An expression-based HDL

with pipelines, 2023.

[143] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. AutoDSE:

Enabling software programmers to design efficient FPGA accelerators. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 2022.

[144] H. Srinivasan and M. Wolfe. Analyzing programs with explicit parallelism.

In Languages and Compilers for Parallel Computing, 1992.

[145] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan

Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architec-

ture for performance-oriented embedded domain-specific languages. ACM

Transactions on Embedded Computing Systems (TECS), 2014.

[146] Stuart Sutherland and Don Mills. Standard gotchas subtleties in the verilog

and systemverilog standards that every engineer should know. In Synopsys

User Group Conference Proc.(SNUG 2006/7). Citeseer, 2006.

[147] Stuart Sutherland, Don Mills, and Chris Spear. Gotcha again: More sub-

tleties in the Verilog and SystemVerilog standards that every engineer should

know.

[148] Paul Teehan, Mark Greenstreet, and Guy Lemieux. A survey and taxonomy

of gals design styles. IEEE Design & Test of Computers, 24:418–428, 10 2007.

doi: 10.1109/MDT.2007.151.

[149] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A

220

language for streaming applications. In International Conference on Com-

piler Construction. Springer, 2002.

[150] Samuel Thomas and James Bornholt. Automatic generation of vectorizing

compilers for customizable digital signal processors. In Proceedings of the

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 1, 2024.

[151] Jesse A. Tov and Riccardo Pucella. Practical affine types. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), 2011.

[152] Yatish Turakhia, Gill Bejerano, and William J. Dally. Darwin: A genomics

co-processor provides up to 15,000x acceleration on long read assembly. In

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2018.

[153] Mike Urbach and Morten B. Petersen. HLS from PyTorch to System Verilog

with MLIR and CIRCT. In Workshop on Languages, Tools, and Techniques

for Accelerator Design (LATTE), 2022.

[154] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis

Ceze. Reticle: a virtual machine for programming modern FPGAs. In ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI), 2021. doi: 10.1145/3453483.3454075.

[155] Veripool. Verilator, 2021. https://www.veripool.org/wiki/verilator.

[156] Muralidaran Vijayaraghavan et al. Bounded dataflow networks and latency-

insensitive circuits. In Conference on Formal Methods and Models for Co-

Design. IEEE, 2009.

221

https://www.veripool.org/wiki/verilator

[157] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. De-

signing modular hardware accelerators in C with ROCCC 2.0. In Field-

Programmable Custom Computing Machines (FCCM), 2010.

[158] Lisa Wu, Raymond J Barker, Martha A Kim, and Kenneth A Ross. Navi-

gating big data with high-throughput, energy-efficient data partitioning. In

International Symposium on Computer Architecture (ISCA), 2013.

[159] Lisa Wu, Andrea Lottarini, Timothy K Paine, Martha A Kim, and Kenneth A

Ross. The q100 database processing unit. IEEE Micro, 2015.

[160] Youwei Xiao, Zizhang Luo, Kexing Zhou, and Yun Liang. Cement: Stream-

lining FPGA hardware design with cycle-deterministic eHDL and synthesis.

In Proceedings of the ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, 2024.

[161] Xilinx Inc. SDAccel: Enabling Hardware-Accelerated Software, .

https://www.xilinx.com/products/design-tools/software-zone/

sdaccel.html.

[162] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis.

UG902 (v2017.2) June 7, 2017., . https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-

synthesis.pdf.

[163] Ruifan Xu, Youwei Xiao, Jin Luo, and Yun Liang. Hector: A multi-level inter-

mediate representation for hardware synthesis methodologies. In IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2022. doi:

10.1145/3508352.3549370.

222

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf

[164] Drew Zagieboylo, Charles Sherk, Gookwon Edward Suh, and Andrew C My-

ers. Pdl: a high-level hardware design language for pipelined processors. In

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), 2022.

[165] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. A hard-

ware design language for timing-sensitive information-flow security. Acm

Sigplan Notices, 50(4):503–516, 2015.

[166] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian

Shun, and Saman Amarasinghe. GraphIt: A high-performance graph DSL.

Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–30,

2018.

[167] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason

Cong. AutoPilot: A platform-based ESL synthesis system. In High-Level

Synthesis: From Algorithm to Digital Circuit. 2008.

[168] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonic-

BOOM: The 3rd generation berkeley out-of-order machine. May 2020.

223

ACRONYMS

AHG Automatic hardware generation. The process of transforming computational

descriptions into circuit implementations. For example: high-level synthesis

(HLS). 120

AST Abstract syntax tree. A representation of a program where each construct

is a node with edges to all of the constructs contained within it. Commonly

used as the first syntactic representation of a program in a compiler after

parsing. 72, 106

CDFG Control-data flow graph. A representation of programs that describes both

control flow and data flow. 73

DSL Domain-specific language. A specialized programming language designed use

in a particular domain like image processing, scientific computing, genomics,

etc. 13, 14, 53

eHDL Embedded hardware description language. An hardware description lan-

guage (HDL) embedded within a software programming language. The soft-

ware language acts as a host language and provide metaprogramming capa-

bilities. 12, 160

FPGA Field programmable gate array. Implemeted as sea of configurable logic

units (such as look-up tables) and interconnect, FPGAs can be used to sim-

ulate arbitrary digital circuits. 17, 106, 225

HDL Hardware description language. A programming language used to describe

hardware using abstractions such as register transfer level (RTL). 3, 5, 9, 11,

13, 120, 122, 160, 165, 199, 224

224

HLS High-level synthesis. The process of compiling high-level, computational pro-

grams to low-level, circuit descriptions. 13, 17, 53, 67, 71, 108, 198, 224

II Initiation interval. The number of a cycles before which a pipelined module can

accept a new set of inputs. 164, 166

IL Intermediate language. Representation of a program designed to simplify anal-

ysis and optimization. Often generated from an AST after initial validity

checks. 6, 15, 16, 53, 54, 103, 106, 108, 197

IPC Number of instructions executed by a processor in one cycle. More than 1

for superscalar processors. 10

IR Intermediate representation. The data structures used to implement the inter-

mediate language. 106

LUT Look-up table. Maps input binary values to outputs. Used as the logical

building blocks for field programmable gate arrays (FPGAs). 47, 111

PDK Process design kit. Interface between circuit designers and chip foundaries.

A PDK contains the necessary information to map a circuit to transistors.

11

PE Processing element. A simple computational unit like an arithmetic logic unit

(ALU) that acts as a building block for more complex accelerators. 67, 108,

109

PPA The physical constraints involved in the design of circuits. Power refers to

the power consumption of the chip, area refers to the physical resources used,

and performance is the task-specific performance metric. 10, 13, 14

225

RTL Register transfer level. Design abstraction that models hardware as stateful

registers and the logical performed to them every cycle. 11, 13, 53, 71, 79,

108, 112, 199, 224

226

GLOSSARY

control logic Signals within a circuit that are used to control the flow of compu-

tations. 13, 120

datapath The part of a circuit that performs computations. 13, 120

latency-insensitive A circuit that does not have statically known timing behav-

ior. For example, a variable-latency divider takes an input-dependent number

of cycles to produce an output. 54, 84

latency-sensitive A circuit that has statically known timing behavior. For exam-

ple, a fully-pipelined, 4-cycle multiplier has a latency of 4 and accepts new

inputs every cycle. 54

netlist A low-level, fully structural description of a circuit which specifies hard-

ware instances and connections between them. 11

synchronous Synchronous hardware design uses a global clock signal that is the

fastest toggling signal in a circuit. 5, 54

227

APPENDIX A

DAHLIA SEMANTICS AND SOUNDNESS

A.1 Semantics

The following lists the grammar for Filament, the core language of Dahlia.

x ∈ variables a ∈ memories n ∈ numbers

b ::= true | false v ::= n | b | v1 bop v2

e ::= v | bop e1 e2 | x | a[e]

c ::= e | let x = e | c1 c2 | c1
ρ∼ c2 | c1 ; c2 | if x c1 c2 |

while x c | x := e | a[e1] := e2 | skip

τ ::= bit〈n〉 | float | bool | mem τ [n1]

The large-step operational semantics listed below capture the complete evaluation

of an expression or command. The environment σ maps variables and memory

names to values, and the context ρ is the set of memories the program has accessed.

σ1, ρ1, e ⇓ σ2, ρ2, v ()

σ1, ρ1, e1 ⇓ σ2, ρ2, v1 σ2, ρ2, e2 ⇓ σ3, ρ3, v2 v3 = v1 bop v2

σ1, ρ1, bop e1 e2 ⇓ σ3, ρ3, v3

σ(x) = v

σ, ρ, x ⇓ σ, ρ, v

a 6∈ ρ1 σ1, ρ1, e ⇓ σ2, ρ2,n σ2(a)(n) = v

σ1, ρ1, a[e] ⇓ σ2, ρ2 ∪ {a}, v

228

σ1, ρ1, c ⇓ σ2, ρ2 ()

σ1, ρ1, e ⇓ σ2, ρ2, v

σ1, ρ1, let x = e ⇓ σ2[x 7→ v], ρ2

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ1, c2 ⇓ σ3, ρ3

σ1, ρ1, c1 c2 ⇓ σ3, ρ2 ∪ ρ3

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ, c2 ⇓ σ3, ρ3

σ1, ρ1, c1
ρ∼ c2 ⇓ σ3, ρ2 ∪ ρ3

σ1, ρ1, c1 ⇓ σ2, ρ2 σ2, ρ2, c2 ⇓ σ3, ρ3

σ1, ρ1, c1 ; c2 ⇓ σ3, ρ3

σ1, ρ1, e1 ⇓ σ2, ρ2, true σ2, ρ2, c1 ⇓ σ3, ρ3

σ1, ρ1, if x c1 c2 ⇓ σ3, ρ3

σ1, ρ1, e1 ⇓ σ2, ρ2, false σ2, ρ2, c2 ⇓ σ3, ρ3

σ1, ρ1, if x c1 c2 ⇓ σ3, ρ3

σ1, ρ1, e1 ⇓ σ2, ρ2, true

σ2, ρ2, c while x c ⇓ σ3, ρ3

σ1, ρ1,while x c ⇓ σ3, ρ3

σ1, ρ1, e1 ⇓ σ2, ρ2, false

σ1, ρ1,while x c ⇓ σ2, ρ2

σ1, ρ1, e ⇓ σ2, ρ2, v

σ1, ρ1, x := e ⇓ σ2[x 7→ v], ρ2

σ1, ρ1, e1 ⇓ σ2, ρ2,n σ2, ρ2, e2 ⇓ σ3, ρ3, v a 6∈ ρ3

σ1, ρ1, a[e1] := e2 ⇓ σ3[a[n] 7→ v], ρ3 ∪ {a}

The small-step operational semantics capture incremental evaluation of an expres-

sion or command and form the basis of the proof of soundness in Appendix A.2.

σ, ρ, e → σ′, ρ′, e′ ()

σ, ρ, e → σ′, ρ′, e′

σ, ρ, a[e] → σ′, ρ′, a[e′]

a 6∈ ρ

σ, ρ, a[n] → σ, ρ ∪ {a}, v

σ, ρ, e1 → σ′, ρ′, e′1

σ, ρ, bop e1 e2 → σ′, ρ′, bop e′1 e2

229

σ, ρ, e2 → σ′, ρ′, e′2

σ, ρ, bop v1 e2 → σ′, ρ′, bop v1 e′2

v3 = v1 bop v2

σ, ρ, bop v1 v2 → σ, ρ, v3

σ(x) = v

σ, ρ, x → σ, ρ, v

σ1, ρ1, c → σ′, ρ′, c′ ()

σ, ρ, e1 → σ′, ρ′, e′1

σ, ρ, a[e1] := e2 → σ′, ρ′, a[e′1] := e2

σ, ρ, e → σ′, ρ′, e′

σ, ρ, a[n] := e → σ′, ρ′, a[n] := e′

a 6∈ ρ

σ, ρ, a[n] := v → σ[a[n] 7→ v], ρ ∪ {a}, skip

σ, ρ, e → σ′, ρ′, e′

σ, ρ, let x = e → σ′, ρ′, let x = e′

σ, ρ, let x = v → σ[x 7→ v], ρ, skip

σ, ρ, c1 → σ′, ρ′, c′1

σ, ρ, c1 ; c2 → σ′, ρ′, c′1 ; c2

σ, ρ, skip ; c2 → σ, ρ, c2 σ, ρ, c1 c2 → σ, ρ, c1
ρ∼ c2

σ, ρ, c1 → σ′, ρ′, c′1

σ, ρ, c1
ρ′′∼ c2 → σ′, ρ′, c′1

ρ′′∼ c2

σ, ρ′′, c2 → σ′, ρ′′′, c′2

σ, ρ, skip ρ′′∼ c2 → σ′, ρ, skip ρ′′′∼ c′2

σ, ρ, skip ρ′′∼ skip → σ, ρ ∪ ρ′′, skip

σ(x) = true

σ, ρ, if x c1 c2 → σ, ρ, c1

σ1(x) = false

σ, ρ, if x c1 c2 → σ, ρ, c2 σ, ρ,while x c → σ, ρ, if x (c while x c) skip

To enforce Dahlia’s safety condition, the typing judgments use the typing context

Γ for variables and the affine context ∆ for memories.

230

Γ,∆1 ` e : τ a ∆2 ()

Γ,∆ ` v : τ a ∆

Γ,∆1 ` e1 : τ a ∆2 Γ,∆2 ` e2 : τ a ∆3 bop : τ → τ → τ

Γ,∆1 ` bop e1 e2 : τ a ∆3

Γ(x) = τ

Γ,∆1 ` x : τ a ∆1

Γ,∆1 ` e1 : bit〈n〉 a ∆2 ∆2 = ∆3 ∪ {a 7→ mem τ [n1]}

Γ,∆1 ` a[e] : τ a ∆3

Γ1,∆1 ` c a Γ2,∆2 ()

Γ,∆ ` skip a Γ,∆

Γ,∆1 ` e1 : bit〈n〉 a ∆2 Γ,∆2 ` e2 : τ a ∆3

∆3 = ∆4 ∪ {a 7→ mem τ [n1]}

Γ,∆1 ` a[e1] := e2 a Γ,∆4

Γ,∆1 ` e : τ a ∆2 (x → τ) /∈ Γ

Γ,∆1 ` let x = e a Γ[x 7→ τ],∆2

Γ1,∆1 ` c1 a Γ2,∆2 Γ2,∆2 ` c2 a Γ3,∆3

Γ1,∆1 ` c1 ; c2 a Γ3,∆3

Γ1,∆1 ` c1 a Γ2,∆2 Γ2,∆1 ` c2 a Γ3,∆3

Γ1,∆1 ` c1 c2 a Γ3,∆2 ∩∆3

Γ1,∆1 ` c1 a Γ2,∆2 Γ2, ρ̄ ` c2 a Γ3,∆3

Γ1,∆1 ` c1
ρ∼ c2 a Γ3,∆2 ∩∆3

Γ,∆1 ` x : bool a ∆2 Γ,∆2 ` c1 a Γ2,∆3

Γ,∆2 ` c2 a Γ3,∆4

Γ,∆1 ` if x c1 c2 a Γ,∆2 ∩∆3 ∩∆4

231

Γ,∆1 ` x : bool a ∆2 Γ,∆2 ` c1 a Γ2,∆3

Γ,∆3 ` c2 a Γ3,∆4

Γ,∆1 ` if x c1 c2 a Γ,∆4

Γ,∆1 ` e : τ a ∆2 Γ(x) = τ

Γ,∆1 ` x := e a Γ,∆2

Γ,∆1 ` x : bool a ∆2 Γ,∆2 ` c a Γ3,∆3

Γ,∆1 ` while x c a Γ,∆3 ∩∆2

A.2 Proof of soundness

If there exists a typing context Γ and affine memory context ∆ under which a

command c type-checks, and Γ,∆ is equivalent to an environment σ and context

ρ, then either σ, ρ, c →∗ σ′, ρ′, skip or c diverges.

To prove this theorem, we will prove the supporting progress and preservation

lemmas (stated below), which together imply soundness.

Supporting definitions

• Defined: a is defined in ∆ if ∃ τ, n with (a 7→ mem τ [n]) ∈ ∆. x is defined in

Γ if ∃ τ with (x 7→ τ) ∈ Γ.

• Type-check: If Γ,∆ ` e : τ a ∆′ then e type-checks to τ under Γ,∆ producing

∆′. If Γ,∆ ` c a Γ′,∆′ then c type-checks under Γ,∆ producing Γ′,∆′.

• ∼ (equivalence): Γ,∆ ∼ σ, ρ if

1. ∀ x with (x 7→ τ) ∈ Γ, ∃ v with (x 7→ v) ∈ σ and v type-checks to τ

under Γ,∆

232

2. ∀ l with (l 7→ τ) ∈ ∆, l /∈ ρ.

• ρ̄: ρ̄ = {a 7→ mem τ [n] ∈ ∆∗ ∧ a /∈ ρ} where ∆∗ is the affine context of

memories initially available to a program.

• Construction: Γ,∆ can be constructed from σ, ρ if

1. ∀ (x 7→ v) ∈ σ, (x 7→ τ) ∈ Γ

2. ∀ l ∈ ρ, (l 7→ mem τ [n]) /∈ ∆

3. v type-checks to τ under Γ,∆

Supporting lemmas

• L1: If Γ,∆ ` c a Γ′,∆′, then Γ ⊆ Γ′. Proof: The only typing rule that modifies

Γ is check_let. Under this rule, Γ′ = Γ extended to add a mapping for a

variable x. There is no rule that removes mapping from Γ. So ∀m ∈ Γ,m ∈ Γ′.

• L2: If c type-checks under Γ,∆, then c type-checks under Γ′,∆ where Γ ⊆ Γ′.

Proof: The only typing rule that reads Γ is check_update, which checks

in its premises that x is defined in Γ. By L1, if x is defined in Γ it is defined

in Γ′. There is also no rule that changes the type τ of x in Γ, so x will have

the same type τ in Γ′.

• L3: If σ, ρ, e → σ′, ρ′, e′, then σ = σ′. Proof: There is no step rule for expres-

sions that extends σ, which by the grammar is the only modification possible

to memory stores.

• L4: If σ, ρ, e → σ′, ρ′, e′ and ρ′ 6= ρ, then e is a read a[n] and ρ′ = ρ ∪ {a}.

Proof: the only step rule for expressions that adds elements to ρ is read2,

by which ρ′ = ρ ∪ {a}. There is no step rule that removes elements from ρ.

233

A.2.1 Progress

If ∃ Γ,∆, σ, ρ such that Γ,∆ ∼ σ, ρ and command c type-checks under Γ,∆, then

either c is a value or

1. ∃ σ′, ρ′, c′ with σ, ρ, c → σ′, ρ′, c′ or

2. c = skip ρ∼ c2 with c2 6= skip and ∃ c′2, ρ
′′ with σ, ρ′′, skip ρ∼ c2 →

σ′, ρ′′, skip ρ′∼ c′2.

Proof

Inductive hypothesis: Progress holds for sub-forms of any inductive form. Assump-

tions: Γ,∆ ∼ σ, ρ and c type-checks under Γ,∆.

Case: c is an expression.

• Case: c is a value. Progress holds by assumption.

• Case: c = bop e1 e2. For simplicity, we ignore the cases in which bop is

incompatible with the types of e1 and e2. We have three possibilities:

1. Neither e1 nor e2 is a value. By assumption c type-checks under Γ,∆, so

by check_bop e1 type-checks under Γ,∆. By the inductive hypothesis,

σ, ρ, e1 → σ′, ρ′, e′1 so we have σ, ρ,bop e1 e2 → bop e′1 e2 as needed.

2. Only e1 is a value v1. By assumption c type-checks under Γ,∆ and

Γ,∆ ` v1 a ∆, so e2 type-checks under Γ,∆. By the inductive hypoth-

esis, σ, ρ, e2 → σ′, ρ′, e2 so σ, ρ,bop v1 e2 → σ′, ρ′,bop v1 e′2.

234

3. Both e1 and e2 are values v1 and v2. σ, ρ,bop v1 v2 → σ, ρ, v1 bop v2 by

bop3.

• Case: c = x. By assumption x type checks under Γ,∆, so x is defined in Γ.

Then ∃ v with (x 7→ v) ∈ σ, so σ, ρ, x → σ, ρ, v by var.

• Case: c = a[e]. By assumption a[e] type-checks under Γ,∆, so by check_read,

e type-checks under Γ,∆ producing ∆2, and a is defined in ∆2. By the the in-

ductive hypothesis, progress holds for e, so σ, ρ, e → σ′, ρ′, e′ or e is a value n.

a is defined in ∆2, so it must be defined in ∆ since there is no type-checking

rule for expressions by which Γ,∆ ` e a ∆2 and ∃ l /∈ ∆,∈ ∆2. So a /∈ ρ. So

if e is a value, then σ, ρ, a[e] → σ, ρ ∪ {a}, σ(a)(n). If e is not a value, then

σ, ρ, a[e] → σ′, ρ′, a[e′].

Case: c = let x = e. By assumption this form type-checks under Γ,∆. By check_let,

e type-checks under Γ,∆. By the inductive hypothesis, e is either a value v or

σ, ρ, e → σ′, ρ′, e′. In the first case we have σ, ρ, let x = v → σ[x 7→ v], ρ, skip. In

the second case we have σ, ρ, let x = e → σ′, ρ′, let x = e′.

Case: c = c1 c2. ∀ σ, ρ, σ, ρ, c1 c2 → σ, ρ, c1
ρ∼ c2.

Case: c = c1
ρ′′∼ c2. We have three possibilities:

• c1 6= skip. By assumption c type-checks under Γ,∆. By check_inter_seq_comp,

c1 type-checks under Γ,∆. By the inductive hypothesis, σ, ρ, c1 → σ′, ρ′, c′1

and so c1
ρ′′∼ c2 → c′1

ρ′′∼ c2.

• c = skip ρ∼ c2. By assumption c type-checks under Γ,∆. By check_inter_seq_comp,

c2 type-checks under Γ, ρ̄. By the inductive hypothesis (and the definition of

235

∼, under which we have ρ), σ, ρ, c2 → σ′, ρ′, c′2, so we have σ, ρ′′, skip ρ∼ c2 →

σ′, ρ′′, skip ρ′∼ c′2.

• If c1 = c2 = skip, ∀ σ, ρ, we have σ, ρ, c1
ρ′′∼ c2 → σ, ρ ∪ ρ′′, skip.

Case: c = c1; c2. We have two possibilities:

• c1 6= skip. By assumption, c type-checks under Γ,∆, so c1 type-checks under

Γ,∆ by check_par_comp. By the the inductive hypothesis, σ, ρ, c1 →

σ′, ρ′, c′1, so σ, ρ, c1; c2 → σ′, ρ′, c′1; c2.

• c1 = skip. ∀ σ, ρ, we have σ, ρ, skip; c2 → σ, ρ, c2.

Case: c = if x c1 c2. By assumption, c type-checks under Γ,∆. Then x type-checks

to bool, so x is either true or false. ∀ σ, ρ, we have σ, ρ, if true c1 c2 → σ, ρ, c1

and σ, ρ, if false c1 c2 → σ, ρ, c2.

Case: c = while x c1. ∀ σ, ρ we have

σ, ρ,while x c1 → σ, ρ, if x (c1 while x c1) skip.

Case: c = x := e. If e is a value v, then ∀ σ, ρ we have σ, ρ, x := e → σ[x 7→

v], ρ, skip. If e is not a value, then by assumption that c type-checks under Γ,∆,

e type-checks under Γ,∆ by check_update. Then by the inductive hypothesis,

σ, ρ, e → σ′, ρ′, e′, so σ, ρ, x := e → σ′, ρ′, x := e′.

Case: c = a[e1] := e2. We have three possibilities:

• e1 and e2 are values n and v. By assumption c type-checks under Γ,∆, so by

236

check_write, a is defined in ∆. By definition of ∼, a /∈ ρ, so the premise

of write3 is satisfied. Then σ, ρ, c → σ[a[n] 7→ v], ρ ∪ {a}, skip.

• e1 is a value n. By assumption c type-checks under Γ,∆, so by check_write

n type-checks under Γ,∆ producing ∆ and e2 type-checks under Γ,∆. By the

the inductive hypothesis, σ, ρ, e2 → σ′, ρ′, e′2, so σ, ρ, a[n] := e2 → σ′, ρ′, a[n] :=

e′2.

• Neither e1 nor e2 is a value. By assumption c type-checks under Γ,∆, so as

does e1. By the the inductive hypothesis, σ, ρ, e1 → σ′, ρ′, e′1, so σ, ρ, a[e1] :=

e2 → σ′, ρ′, a[e′1] := e2.

A.2.2 Preservation

If:

1. ∃ Γ,∆ such that command c type-checks under Γ,∆

2. ∃ σ, ρ with Γ,∆ ∼ σ, ρ

3. ∃ σ′ρ′, c′ with σ, ρ, c → σ′, ρ′, c′ or ∃ σ′, ρ′, ρ′′, c′2 with c = skip ρ∼ c2 and

σ, ρ′′, skip ρ∼ c2 → σ′, ρ′′, skip ρ′∼ c′2

then Γ′,∆′ can be constructed from σ′, ρ′ such that c′ type-checks under Γ′,∆′.

Proof

Inductive hypothesis: Preservation holds for sub-forms of any inductive form. As-

sumptions: 1., 2., 3.

237

Case: c is an expression.

• Case: c is a value. c does not step, so preservation vacuously holds.

• Case: c = bop e1 e2. For simplicity, we ignore the cases in which bop is

incompatible with the types of e1 and e2. We have three possibilities:

1. e1 is not a value. By assumption, c type-checks under Γ,∆ and σ, ρ, c →

σ′, ρ′,bop e′1 e2. So σ, ρ, e1 → σ′, ρ′, e′1. By check_bop Γ,∆ ` e1 a ∆2.

By the inductive hypothesis, Γ′,∆′ ` e′1 a ∆′
2. From L3, σ′ = σ, so

Γ′ = Γ. If ∆′ = ∆, then e2 type-checks under Γ′,∆′
2 and we are done.

If ∆′ 6= ∆, then ρ′ 6= ρ. So by L4 e1 was a read a[n]. By assumption

and check_bop Γ,∆ ` e1 a ∆2 and e2 type-checks under Γ,∆2. Since

e1 = a[n], a could not have been defined in ∆2. e′1 must be a value, so

Γ′,∆′ ` v a ∆′, so ∆′ = ∆2. So e2 must type-check under Γ′,∆′.

2. e1 is a value v1. Then by assumption, σ, ρ,bop v1 e2 → σ′, ρ′,bop v1 e
′
2.

By assumption, c type-checked under Γ,∆, so e2 type-checks under Γ,∆

by check_bop. By the inductive hypothesis, e′2 type-checks under

Γ′,∆′, and values always type-check, so we are done.

3. Both e1 and e2 are values v1 and v2. By assumption, σ, ρ, c → σ, ρ, v1bopv2.

Values always type-check, so we are done.

• Case: c = x. By assumption x type-checks under Γ,∆, so (x 7→ τ) ∈ Γ and

(x 7→ v) ∈ σ, and by assumption σ, ρ, x → σ, ρ, v. Values always type-check,

so we are done.

• Case: c = a[e]. The first possibility is that e is not a value. Then by assump-

tion σ, ρ, a[e] → σ′, ρ′, a[e′], and so σ, ρ, e → σ′, ρ′, e′. We need to show that

a[e′] type-checks under Γ′,∆′. By the inductive hypothesis, e′ type-checks

238

under Γ′,∆′. To satisfy the second premise, it should be that a is defined in

∆′. By assumption that a[e] type-checked, we know from check_read that

a is defined in ∆ and so a /∈ ρ (by definition of ∼). If a was not defined in

∆′, that would mean a ∈ ρ′, but by L4 this would mean that e was a read

a[n], meaning a is not defined in ∆2 where Γ,∆ ` e a Delta2 and c could

not type-check under Γ,∆ - this is a contradiction. So a must be defined in

∆′ and so a[e′] must type-check under Γ′,∆′. The second possibility is that e

is a value n. Then σ, ρ, a[n] → σ, ρ, v and since values always type-check we

are done.

Case: c = let x = e. The first possibility is that e is not a value. By assumption c

type-checks under Γ,∆. By check_let, so does e. By assumption σ, ρ, let x =

e → σ, ρ, let x = e′, so σ, ρ, e → σ′, ρ′, e′. By the inductive hypothesis, e′ type-

checks under Γ′,∆′. Then we have that let x = e′ type-checks under Γ′,∆′, so we

are done. The second possibility is that e is a value v. In this case σ, ρ, let x =

v → σ[x 7→ v], ρ, skip. skip always type-checks, so we are done.

Case: c = c1 c2. By assumption, σ, ρ, c1 c2 → σ, ρ, c1
ρ∼ c2 and c type-checks

under Γ,∆. σ′, ρ′ = σ, ρ, so Γ′ = Γ and ∆′ = ∆. By assumption Γ,∆ ` c1 a Γ2,∆2

and c2 type-checks under Γ2,∆. We need to show that c2 type-checks under Γ2, ρ̄.

Since c2 type-checks under Γ2,∆, it does not use any memories in ρ by definition

of ∼. So it must type-check under Γ2, ρ̄.

Case: c = c1
ρ′′∼ c2. We have three possibilities.

• Neither c1 nor c2 is skip. In this case, we have σ, ρ, c1
ρ′′∼ c2 → σ′, ρ′, c′1

ρ′′∼ c2

and σ, ρ, c1 → σ′, ρ′, c′1. From assumption, c type-checks under Γ,∆, so 1)

239

c2 type-checks under ρ̄′′ and 2) by the inductive hypothesis, c′1 type-checks

under the constructed Γ′,∆′. We need to show c2 type-checks under Γ′, ρ̄′′.

By L2, if c2 type-checks under Γ, ρ̄′′, it will type-check under Γ′, ρ̄′′, so we are

done.

• c1 = skip 6= c2. We have that σ, ρ′′, skip ρ∼ c2 → σ′, ρ′′, skip ρ′∼ c′2, so

σ, ρ, c2 → σ′, ρ′, c′2. By the inductive hypothesis, c′2 type-checks under the

constructed Γ′,∆′ (so it will type-check under Γ′, ρ̄′) and skipalways type-

checks, so we are done.

• c1 = c2 = skip. This form steps to skip, which always type-checks, so we

are done.

Case: c = c1; c2. We have two possibilities:

• c1 6= skip. By assumption σ, ρ, c → σ′, ρ′, c′, so σ, ρ, c1 → σ′, ρ′, c′1. We have

by assumption that c1 type-checks under Γ,∆ to produce Γ2,∆2, and c2

type-checks under Γ2,∆2. By the inductive hypothesis, c′1 type-checks under

Γ′,∆′ to produce Γ′
2,∆

′
2. We need to show that c2 type-checks under Γ′

2,∆
′
2.

We have two possibilities: ρ′ = ρ and ρ′ 6= ρ. Consider the first possibility.

We would have ∆ = ∆′, so ∆2 = ∆′
2. By L2, c2 type-checks under Γ′,∆′

2 as

needed. With the second possibility, it can only be that ρ ⊂ ρ′. There are

then only two cases to consider:

1. c1 contained a read or write involving a[n] and c′1 is a value v. Then

ρ′ = ρ ∪ {a} and a is not defined in ∆′. By check_write and

check_read, a could not have been defined in ∆2. Since Γ′,∆′ `

v a ∆′, ∆2 = ∆′. So c2 must type-check under Γ′,∆′.

240

2. c1 = skip ρ′′∼ skip. By inter_seq3 c′1 = skip and σ′ = σ, so Γ′ = Γ.

By assumption c2 type-checks under Γ2,∆2 where Γ,∆ ` c1 a Γ2,∆2.

By check_inter_ seq_comp Γ2 = Γ.

We need to show c2 type-checks under Γ′
2,∆

′
2 = Γ′,∆′ = Γ,∆′ (since

Γ,∆ ` skip a Γ,∆). For this to be the case, c2 cannot use any memo-

ries in ρ or ρ′′ (by definition of construction).

1) Because Γ,∆ ∼ σ, ρ and c1 type-checks under Γ,∆, c1 does not

use any memories in ρ. Then by assumption that c2 type-checks under

Γ2,∆2 and by check_par_comp, c2 also cannot use any memories

in ρ.

2) By assumption c1 type-checks under Γ,∆ to produce Γ2,∆2. By

check_inter_seq_comp and small_seq ∆2 ⊆ ρ̄′′, and by assump-

tion c2 type-checks under Γ2,∆2, so c2 does not use any memories in ρ′′.

So c2 type-checks under Γ′,∆′ as needed.

• c1 = skip. By assumption skip; c2 type-checks under Γ,∆, so c2 type-checks

under Γ,∆. σ, ρ, skip; c2 → σ, ρ, c2 so Γ′ = Γ and ∆′ = ∆. Then we need to

show c2 type-checks under Γ′,∆′ = Γ,∆, which we have from assumption, so

we are done.

Case: c = if x c1 c2. By assumption c type-checks under Γ,∆, so c1 and c2 both

type-check under Γ,∆, and x is either true or false by check_if. If true, σ, ρ, c →

σ, ρ, c1. If false, σ, ρ, c → σ, ρ, c2. We need to show that c1 and c2 type-check under

Γ,∆ (σ′, ρ′ = σ, ρ, so Γ′,∆′ = Γ,∆). This is given by assumption so we are done.

Case: c = while x c1. By assumption c type-checks under Γ,∆, so by check_while

x type-checks to bool and c1 type-checks under Γ,∆ to produce Γ2,∆2. We need

241

to show that if x (c1 while x c1) skip type-checks under Γ,∆ (σ′, ρ′ = σ, ρ, so

Γ′,∆′ = Γ,∆). For this, it should be the case that x type-checks to bool. This is

already given. It should also be the case that (c1 while x c1) type-checks under

Γ,∆. This requires that c1 type-checks under Γ,∆, which is given by assumption,

and that while x c1 type-checks under Γ2,∆. By L2 if while x c1 type-checks

under Γ,∆ (which it does by assumption), it type-checks under Γ2,∆, so we are

done.

Case: c = x := e. By assumption c type-checks under Γ,∆, so (x 7→ τ) ∈ Γ and e

type-checks under Γ,∆ producing ∆2. We have two possibilities:

• e is not a value. By assumption and check_update σ, ρ, x := e → σ′, ρ′, x :=

e′ and σ, ρ, e → σ′, ρ′, e′. By the inductive hypothesis, e′ type-checks under

the constructed Γ′,∆′. Then by L1 and L2, if Γ,∆ ` e : τ a ∆2 then

Γ′,∆′ ` e′ : τ ;a ∆′
2. So (x 7→ τ) ∈ Γ′ and c′ type-checks under Γ′,∆′ as

needed.

• e is a value v. By assumption x := v type-checks under Γ,∆ so Γ,∆ ` v :

τ a ∆ and (x 7→ τ) ∈ Γ. σ, ρ, x := v → σ[x 7→ v], ρ, skip, and skip always

type-checks, so we are done.

Case: c = a[e1] := e2. By assumption c type-checks under Γ,∆, so e1 type-checks

under Γ,∆ producing ∆2 and e2 type-checks under Γ,∆2 by check_write. Ad-

ditionally, a is defined in ∆ and ∆2 so neither e1 nor e2 use memory a. We then

have three possibilities:

• Neither e1 nor e2 is a value. Then σ, ρ, a[e1] := e2 → σ′, ρ′, a[e′1] := e2 and

σ, ρ, e1 → σ′, ρ′, e′1. By the inductive hypothesis, e′1 type-checks under the

242

constructed Γ′,∆′ to produce ∆′
2. Either ρ′ = ρ or not. If ρ′ = ρ, then by L2,

e2 will type-check under Γ′,∆′
2 since Γ ⊆ Γ′ and ∆′ = ∆. If not, then by L4

e1 is a read a1[n]. By assumption and check_write Γ,∆ ` e1 a ∆2 and

e2 type-checks under Γ,∆2. Since e1 = a1[n], a1 could not have been defined

in ∆2. e′1 then must be a value, so Γ′,∆′ ` v a ∆′, so ∆2 = ∆′. So e2 must

type-check under Γ′,∆′.

• e1 is a value n and e2 is not a value. Then σ, ρ, a[e1] := e2 → σ′, ρ′, a[e1] := e′2

and σ, ρ, e2 → σ′, ρ′, e′2. By the inductive hypothesis, e2 type-checks under

Γ′,∆′. e1 is a value and always type-checks, so we are done.

• e1 is a value n and e2 is a value v. Assuming this type-checks, we step to

skip, which always type-checks, so we are done.

243

APPENDIX B

FILAMENT SEMANTICS AND SOUNDNESS

B.1 Syntax

Figure B.1 presents the syntax of a desugared version of Filament that only allows

parameterization of components using one event. Neither simplification loses gen-

erality because user-level components with multiple events cannot define any form

of interaction between them—they are functionally equivalent to multiple com-

ponents with disjoint events. Filament’s external components can express more

behaviors than this formalism allows for and are therefore not covered by this

formalism.

A Filament program is a sequence of components M each of which encapsulates

the structure and schedule of a pipeline. Commands c include port connections,

component instantiation, invocations. Component are parameterized using exactly

one event and invocations allow scheduling using one event.

x,C ∈ vars t ∈ events p, q ∈ ports

T ::= t | T + n π ::= [T1, T2]

M ::= def C〈t : n〉(p1 : π1, . . . , pj : πj){c}
c ::= c1 • c2 | pd = ps | x := new C | x := inv x〈T 〉(p1, . . . , pj)

Figure B.1: Syntax of desugared Filament programs.

244

JcK : Log → Log (Log = T → R×W)Jx := newCK = idJpd = psK = λ(R,W). if ps ∈ W then (R{ps/pd},W) else (R,W)Jc1 • c2K = Jc1K ∪ Jc2KJx1 := invx2〈T ′〉(q1, · · · , qm)K = Jconnects(x1, [q1, . . . , qm])K ◦ Jx2K
JMK : PJdefC〈t : n〉(i0 : π0, . . . , o0 : πi, . . .){c}K = {π0 7→ i0, . . .} × {πi 7→ o0, . . .}

Figure B.2: Log-transfomer semantics for Filament’s core language. Each command
produces a log (L) which maps events (T) to multisets of reads (R) and writes
(W). Component definitions produce partial logs (P) by mapping availabilities of
inputs to reads and availabilities of outputs to writes.

B.2 Semantics

The basis of our semantics is logs of reads and writes. Intuitively, every command

generates a function from events to (multi)sets of reads and writes indicating which

ports were read or written to at that particular event. More formally, every com-

mand is interpreted as a function over logs as presented in Figure B.2 which pro-

vides a denotation of Filament programs as a log transformer (L) of events to

multisets of port reads (R) and port writes (W). Since components are allowed to

use exactly one event, say T , the log maps events such as T , T + 1, etc. to reads

and writes to ports defined by the subcomponents. Instantiation does not affect

the logs, while connections rewrite the logs by adding the LHS port to the set of

writes for event where the RHS port is defined. Parallel composition is interpreted

as the union of the logs produced by the two commands.

Finally, invocations produce a log-transformer derived from its signature: the

input ports are added to the reads (R) and the output ports to the writes (W) for

245

each event contained in their corresponding availability interval. Note, however,

that the semantics given by the signature uses the “incorrect” ports, since it is

using the ports given by the signature. We work around by using the connects

metafunction which is defined was

connects(x1, [q1, · · · qm]) = (x1.p1 = q1); · · · ; (x1.pm = qm),

where we are implicitly assuming that the ports x1.pi have not been used. Intu-

itively, this metaprogram coverts the arguments to an invocation into connections

and generates a log by interpreting them using the denotation over commands. The

semantics of a program is defined by the log produced by a distinguished top-level

component.

Components and its semantics For example, a combinational adder and a

sequential multiplier with a two-cycle latency produce the following logs:

Jdef add〈G : 1〉(l: [G,G+ 1], r: [G,G+ 1], out: [G,G+ 1])K =G → ({ l, r }, { go, out })

Jdef mul〈G : 2〉(l: [G,G+ 1], r: [G,G+ 1], out: [G+ 2, G+ 3])K =G → ({ l, r }, { go })

G+ 1 → (∅, { go })

G+ 2 → (∅, { out })

Note that the use of the instances is reflected through the writes their interface

ports go (not shown in the signature). The log indicates that the multiplier accepts

new values every 2 cycles by writing to the go port in both cycles G and G + 1.

Because we track multisets of reads and writes, we can track conflicting writes to

the same port.

Using these semantics, we can define the well-formedness constraint (§7.3.2) on

logs:

246

Definition B.2.1 (Well-Formedness). A log L is well-formed if and only if for all

events

• There are no conflicting writes: Ws = W where Ws is the deduplicated set of

writes.

• Reads are a subset of writes for every event: R ⊆ Ws.

While in real hardware, values are always available on a port or a wire, Filament’s

semantics only track semantically valid values from a read. Usage of hardware

resources is denoted by a write, and it is physically impossible to write two values

to a port; instead, the circuit uses a multiplexer to select between the two values.

Multiple uses of a resource silently corrupt the data.

The safe pipelining constraints (§7.3.4) can be defined in terms of repeated

execution of the semantics of a program:

Definition B.2.2 (Safe Pipelining). If a component M has an event T with delay

d, and JMKG represents its log where T is replaced with the event G, then M is

safely pipelined if and only if for every n ≥ d the logs Ln = JMKT ∪ JMKT+n are

well-formed.

B.3 Type System

Our presentation focuses on Filament’s substructural type system that is used to

track non-conflicting use resources as well as signal validity. We elide the descrip-

tion of features that track things such as port widths which are standard.

247

τ ::= ∀〈t : n〉(p1 : π1, . . . , pj : πj)

Γ ::= · | Γ, C : τ | Γ, p : π

∆ ::= · | ∆, t : n

Λ ::= · | Λ, I : π | Λ, p : π

Typing contexts The typing judgements use the following typing contexts:

• Γ tracks the types for components and instances and availability of ports.

• ∆ tracks the delays associated with each event in the context.

• Λ is the timeline context and tracks the availability of each instance and port.

The type context (Γ) and timeline context (Λ) store timelines for ports and

instances respectively. Timelines for ports are reusable since reading a port does

not consume it during that cycle. However, the timeline of an instance is con-

sumed when it is used in a cycle. Because of this, timeline contexts also provide a

separating union inspired by separation logic [133].

Splitting timelines A valid separating split of a timeline context Λ = Λ1 ∗ Λ2

if and only if both Λ1 and Λ2 bind all the same instances and for each instance,

the timelines are disjoint. Formally:

Λ = Λ1∗Λ2 iff ∀(I : π) ∈ Λ ⇒ ∃π1, π2.(I : π1) ∈ Λ1∧(I : π2) ∈ Λ2∧π1∩π2 = ∅∧π1∪π2 = π

248

Instantiating components Instantiating a module binds the signature of the

component to the instance and make the resource available throughout the timeline

of the program, denoted by [0,∞).

Γ(C) = τ

Γ′ = Γ, I : τ
Λ′ = Λ, I : [0,∞)

∆,Λ,Γ ` I := new C a Λ′,Γ′ Instantiate

Port connections Connecting ports checks that the source port is available for

at least as long as the destination port requires:

Λ(pd) ⊆ Γ(ps)

∆,Λ,Γ ` pd = ps a Λ,Γ
ConnectValidRead

Splitting timelines with composition The composition rule splits the time-

line context using the separating split operator and checks the two commands. Note

that that same type context Γ is used for both commands which means previously

defined ports are available in both the commands:

∆,Λ1,Γ ` c1 a Λ′
1,Γ1

∆,Λ2,Γ ` c2 a Λ′
2,Γ2

∆,Λ1 ∗ Λ2,Γ ` c1 • c2 a Λ′
1 ∗ Λ′

2,Γ1 ∪ Γ2
CheckComp

Checking invocations The invocation rule enforces well-formedness and safe-

pipelining constraints and is therefore quite verbose. We separate out type checking

249

of invocations into three sets of premises that logically reflect the properties pre-

sented in §7.3.

valid reads no conflicts safe pipelining

∆,Λ,Γ ` x := invokeI〈T 〉(q1, .., qj) a Λ,Γ′′

The first set of premises check that all the reads from all ports mentioned in an

invocation are valid, i.e., they are available for at least as long as the instance’s sig-

nature requires. Finally, invocations bind the availability of all the ports associated

with the instance to the type context.

Γ(I) = ∀ 〈t : n〉(p1 : π1, .. , pj : πj)

Γ(q1) = π1, .. ,Γ(qj) = πj

π′
1 = π1[t/T], .. , π′

j = πj[t/T]

Γ(p1) ⊆ π′
1, .. ,Γ(pj) ⊆ π′

j

Γ′ = x.{p1 : π′
1, .. , pj : π

′
j}

Γ′′ = Γ ∪ Γ′

∆,Λ,Γ ` x := invoke I〈T〉(q1, .. , qj) a Λ,Γ′′ InvokeValidReads

The next set of premises ensure that the instance is available in the current

timeline context. This ensures that there are no conflicting uses of the component

anywhere else in the design.

Γ(I) = ∀ 〈t : n〉(p1 : π1, .. , pj : πj)

Λ(I) = π

[T,T + n] ⊆ π

∆,Λ,Γ ` x := invoke I〈T〉(q1, .. , qj) a Λ,Γ′′ InvokeNoConflicts

The composition rule is responsible for selecting a valid split to ensure that the

above rule’s constraints are satisfied. If there is no such split possible, then the

program has conflicting uses of the instance.

250

A final set checks for the safety of pipelining an invocation (§7.3.4):

Γ(I) = ∀ 〈t : n〉(p1 : π1, .. , pj : πj)

E (T) = t′

∆(t′) ≥ ∆(t)
∆,Λ,Γ ` x := invoke I〈T〉(q1, .. , qj) a Λ,Γ′′ InvokeSafePipeline

B.4 Type Soundness

Our type system guarantees theorem focuses on the well-formedness property

(§7.3.2). It states that well-typed commands preserve well-formed logs. A second

soundness property of our semantics is that the log transformers generated by well-

typed programs may only add available ports to the writes of logs. This is captured

by the following theorem.

Lemma B.4.1 (Availability Soundness). If ∆;Λ; Γ ` c a Λ′; Γ′, then for every

log L an every event T , let (R,W) = JcK (L, T) then p ∈ W if, and only if,

p ∈ π2(L(T)) or T ∈ Λ(p).

Proof. The proof follows by induction on the typing derivation. The first case is

trivial, since the identity function maps any log to itself. The port connection case

does not modify the write component, which makes it similar to the identity case.

The composition operation follows by the inductive hypothesis. For the invocation

case consider a port p in the writes of the transformed log and assume that p /∈ L.

By construction, this p has to be one of the output ports which, by the typing rule,

has to be available. The other direction follows by case analysis.

By specializing the theorem above to the composition c1•c2 and by using the

fact that, by assumption, the Λ contexts of c1 and c2 are disjoint it follows:

251

Corollary B.4.2 (Disjoint Writes). If ∆;Λ; Γ ` c1 • c2 a Λ′; Γ′, then for logs

(R1,W1) = Jc1K (L) and (R2,W2) = Jc2K (L), W1 − L and W2 − L are disjoint.

Theorem B.4.3 (Soundness Property). If ∆;Λ; Γ ` c a Λ′; Γ′ then if L is well-

formed, then JcK − L is well-formed as well.

Proof. The proof follows by induction on the typing derivation of c.

• Case Instantiate: by assumption, L is well-formed.

• Case Connection: by assumption L is well-formed, therefore W is a set.

For the first condition, there are two possibilities: either pd ∈ R or pd /∈ R.

If the second case holds then, R{pd 7→ ps} = R ⊆ W . If pd ∈ R then,

by assumption of the typing rule, the availability of pd is a subset of the

availability of ps and, by well-formedness of the input log, ps ∈ W , which

implies R{pd 7→ ps} ⊆ W .

• Case Comp: by the induction hypothesis L1 = Jc1K (L) and L2 = Jc2K (L) are

well-formed, which implies that R1 ⊆ W1 and R2 ⊆ W2. By monotonicity

of the union operation, R = R1 ∪ R2 ⊆ W1 ∪ W2 = W and the first well-

formedness condition holds. Additionally, by corollary B.4.2 the writes for

the two logs are disjoint, making Jc1 · c2K (L) well-formed.

• Case Invoke: The only new writes done by the invocation rule are the output

ports of the instance. By construction, they are a set. To prove that the reads

are a subset of the writes, observe that the log generated by an instance is, on

purpose, ill-formed because it uses placeholder names for the reads as writes.

It is the job of the connects to ensure that the log will be well-formed. Note

that, by definition, the semantics of port connection only alter the log if the

source is in the writing log. Therefore, if we want to show that the reads

252

are a subset of the writes, every guard in the semantics of connects must be

true so that there are no placeholder ports in the log. This follows from the

fact that, by construction, every port connection will be well-typed and, by

Lemma B.4.1, we can conclude.

253

	Biographical Sketch
	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	End of Scaling
	Tools to Build Hardware
	My Thesis
	Organization
	Previously Published Material

	Programming Models for Hardware Design
	Basics of Hardware Design
	Hardware Description Languages
	High-Level Programming Models
	High-Level Synthesis
	Domain-Specific Languages

	Summary

	Predictable Accelerator Design with Time-Sensitive Affine Types
	Predictability Pitfalls in Traditional HLS
	An Example in HLS
	Enforcing the Unwritten Rules

	The Dahlia Language
	Affine Memory Types
	Ordered and Unordered Composition
	Memory Banking
	Loops and Unrolling
	Combine Blocks for Reduction
	Memory Views for Flexible Iteration

	Formalism
	Syntax
	Large-Step Semantics
	Type System
	Small-Step Semantics
	Desugaring Surface Constructs
	Soundness Theorem

	Evaluation
	Implementation and Experimental Setup
	Case Study: Unrestricted DSE vs. Dahlia
	Dahlia-Directed DSE & Programmability

	Discussion

	A Compiler Infrastructure for Automatic Hardware Generation
	Design Considerations
	Overview by Example
	Reduction Tree in Calyx
	Optimizing Accelerator Designs
	Structure and Control

	The Calyx Intermediate Language
	Components
	Cells and Wires
	Groups and Control
	Control Statements
	Attributes
	Synopsis

	Targeting Calyx
	Systolic Array Generator
	Dahlia
	Summary

	Compiling Calyx to Hardware
	Calling Convention
	Compilation Workflow
	Compiling Control Statements

	Optimizing Calyx Programs
	Resource Sharing
	Component Sharing via Live-Range Analysis

	Discussion

	Compositional, Time-Sensitive Reasoning for Hardware Generation
	Static Abstractions for Calyx
	Static Structural Abstractions
	Static Control Operators
	Unification Through Semantic Refinement

	Targeting Static Abstractions
	Systolic Array
	Dahlia Compiler

	Compilation
	Collapsing Control
	FSM Instantiation
	Wrapper Insertion

	Optimizations
	Static Inference and Promotion
	Schedule Compaction
	Latency-Aware Component Sharing

	Discussion

	Evaluating Calyx
	Implementation of the Calyx Infrastructure
	Systolic Arrays
	Design Considerations
	Implementation
	Evaluation

	Dahlia Compiler
	Effect of Optimizations
	Resource Sharing
	Impact of Static Abstractions

	Modular Hardware Design with Timeline Types
	Example
	Traditional Hardware Description Languages
	Filament
	Checking Timing Behavior
	Pipelining
	Area-Throughput Trade-offs with Filament
	Summary

	The Filament Language
	Events and Timelines
	Components
	Instances
	Invocations
	Connections
	Interfacing with External Components

	Type System
	Delay Well-Formedness
	Well-Formedness
	Initiation Intervals
	Safe Pipelining

	Compilation
	Low Filament
	Generating Explicit Schedules
	Lowering to Calyx
	Optimizing Continuous Pipelines

	Formalization
	Semantics
	Type System

	Evaluation
	Expressivity Evaluation
	Accelerator Design with Filament

	Correct and Compositional Hardware Generators
	Motivating Example
	Initial Implementation
	Parameterized Design
	Integrating with External Generators
	Summary

	The Parafil Language
	Parameters
	Parametric Signatures
	Bundles
	Compile-time Constructs
	Reusing Instances

	Bottom-up parameterization
	Interfaces for Hardware Generators
	Stable Interfaces for Generator Composition

	The Parafil Compiler
	Type Checking
	Partial Evaluation
	Elaboration
	Bundle Elimination

	Composing External Generators
	Type Checking
	Elaboration

	Parameterized FFT
	FFT Building Blocks
	Iterative FFT
	Streaming FFT

	Enriching High-Level Design
	DSLX Language
	Integrating with Parafil-gen
	Iterative FFT with XLS

	Conclusion
	Retrospective
	Open Questions

	Acronyms
	Glossary
	Dahlia Semantics and Soundness
	Semantics
	Proof of soundness
	Progress
	Preservation

	Filament Semantics and Soundness
	Syntax
	Semantics
	Type System
	Type Soundness

