
A Toolkit for Designing Hardware DSLs
Griffin Berlstein

Cornell University
griffin@cs.cornell.edu

Rachit Nigam
Cornell University

rnigam@cs.cornell.edu

Chris Gyurgyik
Cornell University
cpg49@cornell.edu

Adrian Sampson
Cornell University

asampson@cs.cornell.edu

Abstract—Recent years have seen a renewed interest in open-
source hardware design tools everywhere in the stack—from
new register-transfer-level (RTL) languages to open-source flows
for fabricating silicon [1]. While innovation in the traditional
hardware stack promises better, faster, and more portable tools,
key innovations are still needed to democratize hardware design.
Specifically, domain specific languages (DSLs) allow experts
to concisely express computations without delving into low-
level hardware details are needed to enable widespread use
of hardware accelerators. In order to simplify the gargantuan
task of implementing, optimizing, and lowering such hardware
domain specific languages (DSLs), we have been building Calyx,
an intermediate language (IL) and a compiler infrastructure for
accelerator generators. We demonstrate how Calyx IL’s novel
separation between the structural and control-flow aspects of
an accelerator design enables it to: (1) simplify frontends by
efficiently encoding their semantics, (2) enable novel optimization
passes that cannot be performed in traditional hardware ILs, and
(3) allow us to build software-like debugging infrastructure.

I. INTRODUCTION

The rise of open-source hardware tools has begun to revolu-
tionize the system stack for general silicon and FPGA design.
Above the level of these general-purpose tools, however, there
is a need for commensurate advances in infrastructure for
building abstractions for high-level hardware accelerator gen-
eration using domain-specific languages (DSLs). We identify
two problems in the space that need to be addressed to
make designing new hardware DSLs as painless as software
DSLs. First is the problem of a robust and optimized compiler
infrastructure like LLVM [2] that allows developers to quickly
take advantage of heavily optimized optimization and lowering
passes. Such an infrastructure needs to perform all of the
repetitive optimizations and lowering tasks well so that DSL
designers can focus more on developing new abstractions.
Second, there has been comparatively little work in the fun-
damental problem of debugging. While low-level hardware
engineers have access to a wide range of verification tools,
high-level domain experts do not have the same luxury: those
wishing to debug their DSL-generated accelerator are left with
only their wits and a waveform debugger. While traditional
debugging workflows may be a good fit for hardware experts
designing traditional hardware such as a CPU, the disconnect
between waveforms and DSL semantics make them a non-
starter for domain experts when implementing application-
specific accelerators. While DSL users write programs with

This work is open source: https://capra.cs.cornell.edu/calyx/

Dahlia Systolic 
Array TVM

Your 
Cool 
DSL

Calyx 
Interactive 
Debugger

CIRCT

Verilog

Calyx Compiler

Optimization 
Passes

Verilator FPGA

FIRRTL Your Cool 
HDL

Fig. 1: The Calyx infrastructure for hardware DSLs.

abstractions like loops and tensors, they have to debug them
at the level of wires and registers.

The fundamental problem of waveform debugging is that
RTL lacks control-flow information. In every cycle, any port
may change and contribute to the bug; this means that such
tools must necessarily capture the entire state of the design
and present this overwhelming information to the user. When
trying to isolate a bug, the user is initially faced with every
single wire and register’s state at every time step. While
tractable in small cases, this approach is hard to scale: a
simple 8×8 matrix multiplier can take thousands of cycles.
Without some insight about the bug, identifying the problem,
and localizing the root cause, is vastly more complicated
than it should be. If small linear algebra kernels are this
unapproachable, debugging a full neural network accelerator
is nigh impossible. Contrast this experience to debugging
a software program where a user can a debugger to step
execution, create breakpoints, and view intermediate results
while executing their program. These abstractions of software
debuggers, however, are difficult to port to RTL languages
since they are fundamentally attached to abstractions such as
clock cycles instead of control structures such as loops.

Our solution to the problems of reusability and debugging
is building a new toolkit and ecosystem based on the Calyx [3]
infrastructure (Figure 1). Calyx, like LLVM, uses a small
but expressive intermediate language (IL) that can describe,
optimize, and lower hardware accelerators specified in a mul-
titude of DSLs. The key innovation of Calyx is a separation

https://capra.cs.cornell.edu/calyx/


between the control-flow flow and structural representation
of an accelerator design. By explicitly encoding the control
flow information, Calyx enables novel, reusable optimizations
(Section III) as well as an interactive, software-like debugging
tool (Section IV).

II. THE CALYX INTERMEDIATE LANGUAGE

Calyx’s mixed representation of control and structure, along
with a precise characterization of isolation and timing proper-
ties enables Calyx to support optimizations that can transform
both low-level structural aspects of the design, such as the
finite-state machine encoding, to higher-level properties such
as the amount of parallelism and resource-sharing.

A Calyx program consists of components which encapsulate
the structure and control flow of a sub-circuit. They correspond
to hardware modules in an RTL design. Each component
defines its input and output ports along with three sections:
(1) cells which declare the subcomponents used by a com-
ponent, (2) wires which describe the connection between
ports of subcomponents, and (3) control which describes the
control-flow of the component using a software-like imperative
language.

The following Calyx component defines a component that
doubles the value of its input:
component double(in: 32) -> (out: 32) {
cells {

adder = std_add(32);
}
wires {

adder.left = in; adder.right = in;
out = adder.out;

}
control { }

}

The program defines the subcomponent adder which is an
instance of the std_add module. Next, it accepts inputs using
the 32-bit port in, and generates a 32-bit output out. The
input port of the component is connected to the inputs the
adder while the output port is connected to the output of the
adder adder.out. Since the control section is empty, this
component is purely-structural and looks very similar to RTL
languages.

A. Groups and Control

Calyx uses the group keyword to define a collection of
assignments that collectively perform some action. For exam-
ple, the following group definition increments the value in a
register r:
group incr {
adder.left = r.out;
adder.right = 32'd1;
r.in = adder.out;
r.write_en = 1'd1;
incr[done] = r.done;

}

Assignments within a group act like any other set of
assignments: they are continuously active and can operate over

multiple clock cycles. However, by defining a done condition,
the group can state when the assignments have performed
a meaningful action such as increment a register. Once the
action is performed a group can be stopped from executing
the assignments.

The ability to control the execution of groups is provided
by the control program. For example, the following control
program will increment the value of the register r three times
by executing the assignments in incr thrice:
control { seq { incr; incr; incr; } }

The seq operator executes the groups sequentially. In order
to know when a group is done with its computation, the seq
operator uses the done condition of the group. Calyx supports
several control operators: seq for sequencing execution, par
for parallel execution, if for conditional execution, while for
encoding loops, and invoke for function call-like semantics.

The combination of groups and control operators allows
hardware DSLs to easily encode their semantics into hard-
ware. For example, our frontend for an imperative, loop-
based language [4] can directly map its control flow into
Calyx operators. While it only has five operators, we’ve used
Calyx to develop a several DSLs that can generate a wide
variety of architectures: an imperative, loop-based language,
a systolic array generator, a frontend for TVM [5], and an
implementation for a ternary content addressable memory
(TCAM).

For a longer overview on designing a frontend with Calyx,
please refer to the Calyx documentation.1

III. REUSABLE OPTIMIZATIONS

Along with an intermediate representation, Calyx imple-
ments a modular, pass-based compiler infrastructure similar
to LLVM [2]. Unlike hardware ILs such as FIRRTL [6],
LLHD [7], or LNAST [8], Calyx explicitly encodes the
control-flow of the hardware design. Unlike software ILs such
as LLVM, Calyx explicitly represents the structural aspects of
the design, such as which adder performs which computation.
In this way, Calyx can injest software ILs as frontends and
emit hardware ILs as backends.

Calyx’s mixed representation enables it to perform opti-
mizations that utilize both the control-flow information as
well as the structural information. We overview one such
optimization called register unsharing which attempts to trade-
off logic for memory in the final design by instantiating
additional registers when possible.

Unlike traditional software compilers, where minimizing
the number of used registers is always optimal, in hardware
designs, the target dictates the profitability of register-reuse.
For example, on a traditional FPGA, each slice may contain a
stateful element making registers readily available compared
to complex multiplexers. On the other hand, on ASIC pro-
cesses, logic becomes relatively cheap while registers become
expensive.

1https://capra.cs.cornell.edu/docs/calyx/tutorial/frontend-tut.html

https://capra.cs.cornell.edu/docs/calyx/tutorial/frontend-tut.html
https://capra.cs.cornell.edu/docs/calyx/tutorial/frontend-tut.html


Because of this, we implemented a pass to “unshare” or
separate the uses of registers when possible. In conjunction
to Calyx’s already available implementation of a register
sharing pass, this enables fine-grained memory-logic trade-offs
by DSL designers and application users. In pseudocode, the
optimization can perform the following transformation:
let x = 10; x := x + 1; x := x + 10;

into:
let x = 10; let y = x + 1; let z = y + 10;

In the first program, there are three writes to the register x

which means the generated hardware will instantiate a 4 :
1 multiplexer for one register. The second program instead
instantiates three registers and no multiplexers whatsoever.

The core implementation of the optimization first calcu-
lates the reaching definitions of registers and then uses this
information to rewrite future register uses. In traditional soft-
ware optimization parlance, a definition is killed when it is
overwritten. For example, the statement x := x + 1 kills the
original write to x making this statement available for register
unsharing.

The analysis uses groups to calculate when a register
definition is killed:
group write_x {
x.in = 32'd10; x.write_en = 1'd1;
write_x[done] = x.done;

}

Since the port x.in is used in this group, the pass can infer
that any previous definition of x has been killed by this pass.
Next, it uses the control program to analysis when a particular
register definition can be rewritten:
seq {
write_x; read_x_and_y;
write_y_to_x; read_x;

}

In this control program, if the group read_x_and_y makes
use of x, its definition cannot be rewritten. However, if
write_y_to_x overwrites the value of x, then uses of x in
read_x can be rewritten. The Calyx implementation of this
pass uses a parallel CFG [9] representation to make it work
with general Calyx programs.

In this way, Calyx’s explicit representation of control and
structural information enables unique control-flow-oriented
hardware optimizations. Calyx’s open source implementation
features 27 passes that validate, optimize, and lower Calyx
programs for simulation, synthesis, or FPGA execution.

IV. INTERACTIVE DEBUGGER

While the Calyx ecosystem already supports running Ca-
lyx programs through both simulation and FPGA execution,
debugging Calyx programs remains challenging—programs
must first be lowered to RTL, losing the rich control-flow
information encoded in the Calyx level and rely on wave-
form or FPGA debugging techniques. Our key observation is
that by leveraging the high-level control flow representation,

we can enable Calyx program to both simulate faster and
provide software-like debugging features. To this end, we’ve
implemented the Calyx interactive debugger (CIDR) which
can simulate Calyx programs and provide a software-like
debugging experience with breakpoints, stepping execution,
and printing out intermediate values. By directly building this
system on top of the Calyx infrastructure, we provide added
benefits to frontends using Calyx—they can immediately pro-
vide their users a debugging experience that does not require
understanding the semantics of RTL programs.

CIDR is able to sidestep some of the conventional chal-
lenges of hardware simulation and debugging by dint of Ca-
lyx’s representation. Efficient hardware simulation [10] relies
on the fact that while a hardware may have most of its
assignments active every cycle, in practice, a majority of them
do not change every cycle. By leveraging these low-activity
factors in RTL designs, efficient simulators can avoid having to
compute every single assignment every cycle. The challenge,
however, is that the information of which assignments are
inactive in a given cycle is not present in the source RTL
program. This forces simulators to develop complex heuristics
which identify inactive regions and avoid simulating them
to save resources; however, these heuristics are necessarily
conservative and so simulators must fall back to simulating
these regions, lest the simulator fail to preserve the semantics
of the accelerator. Thus RTL’s structure, or lack thereof,
imposes a clear cost in both runtime and code complexity.

In contrast, Calyx’s control program encode exactly which
assignments are active in a given clock. For example, if a
program uses Calyx’s seq operator, the Calyx program can
infer that only the set of assignments in current group is going
to be active. This means that CIDR knows, at all times, which
parts of the accelerator are running and how they relate to
each other as well as the rest of the execution schedule. This
removes some of the complexity of simulation and suggests the
possibility of a fast simulator for Calyx without the need for
complex heuristics. Table I reports on preliminary experiments
comparing the end-to-end simulation times for Verilator [11]
and CIDR using the Polybench [12] benchmarks. Because
CIDR is a “pure” interpreter, it sidesteps the compilation phase
required for Verilator simulation: the running times in the table
for Verilator include C++ generation, C++ compilation, and
simulation execution. In these benchmarks, CIDR consistently
outperforms Verilator. While larger benchmarks are needed
to create a more complete picture, the initial results are
promising.

Beyond the potential to increase simulation speeds, this
additional control flow information means that CIDR programs
are more closely related to source-level programs generated by
frontends. This enables CIDR to provide structured debugging
of source-level programs. We demonstrate CIDR’s capabilities
using three features: stepping execution, breakpoints, and in-
specting intermediate values. A traditional RTL simulator can
support execution stepping at the granularity of cycles since it
does not have access to any additional control information.
In contrast, CIDR can step execution at the level of both



Benchmark CIDR (seconds) Verilator (seconds)
symm 1.8± 0.003 10.4± 0.064
gesummv 1.7± 0.013 15.2± 0.142
trisolv 1.5± 0.023 9.6± 0.174
3mm 2.3± 0.018 12.4± 0.119
bicg 1.5± 0.019 9.8± 0.083
trmm 1.5± 0.015 9.6± 0.050
2mm 2.0± 0.050 14.0± 0.384
durbin 1.5± 0.012 10.4± 0.013
gemver 1.9± 0.023 18.0± 0.502
syrk 1.8± 0.018 10.5± 0.077
mvt 1.7± 0.016 14.4± 0.137
syr2k 2.1± 0.014 11.5± 0.092
doitgen 2.9± 0.002 9.4± 0.036
ludcmp 1.6± 0.010 14.7± 0.089
gemm 1.8± 0.006 10.8± 0.069
atax 1.8± 0.016 12.2± 0.383
lu 1.5± 0.017 9.9± 0.059

TABLE I: End-to-end simulation time for Polybench bench-
marks averaged over 10 runs.

(a) Enabling breakpoints. (b) Stepping execution.

(c) Printing intermediate values.

Fig. 2: The interface for Calyx Interactive Debugger (CIDR).

cycles and groups. This allows users to step over whole set
of assignments that they know to be behaving correctly: for
example if the group that increments a register works correctly,
the user can immediately step over all the assignments and
cycles needed to run the group. Figure 2b shows how a user
can step through execution of groups. Next, CIDR support
breakpoints at the level of groups and control programs
(Figure 2a). Again, unlike RTL simulators which can only
provide breakpoints when a particular value changes, CIDR
accomplishes this using Calyx’s mixed representation. Finally,
CIDR enables inspection of intermediate values in each port
of a subcomponent. Figure 2c shows how a user can output
the value of a port during execution. While this is similar to
capabilities provided by RTL and waveform debugging, since
CIDR is capable of showing the user only the portions of

the circuit which are currently relevant, it greatly reduces the
cognitive burden of looking through dozens of port signals to
figure out which ones might be contributing to the current bug.

Open-source infrastructure like CIDR is a boon for compiler
developers and users of hardware DSLs. Domain-specific
users can immediately run their code and receive feedback
without needing to understand the semantics of low-level RTL
programs and use a software-like debugging features when
they run into problems. Compiler developers can focus on
designing new abstractions and features for their DSLs instead
of spending time on designing a debugging experience from
scratch. Instead, they can extend the CIDR to support differ-
ent debugging modes that present to users information in a
domain-specific manner—for example using port information
to reconstruct arrays or tensors present in the surface language.

Finally, CIDR makes it easier to develop and maintain the
Calyx compiler infrastructure itself. Unlike many compilers,
the Calyx compiler is modular—composed of many distinct
passes which, in concert, transform Calyx programs. Simu-
lating Calyx programs means that it is possible to perform
differential testing of the program’s behavior under different
passes to validate that the passes preserve semantics in the
appropriate way. While Verilator simulation supports this
methodology, it is hard to know if individual passes are correct
since the simulation path necessarily invokes the lowering
passes, any of which could potentially obscure or introduced
a bug. Source-level simulation gets rids of this requirements
and enables testing of Calyx programs at all levels.

V. FUTURE WORK

Calyx’s mixed representation presents several opportunities
to advance the state of the art and build robust, open-source
tools. We are currently focused on three thrusts of Calyx
development: First, we are building a robust simulation and
debugging infrastructure that allows DSL developers to con-
nect source-level semantics to the generated hardware designs.
We plan to add features such as rematerializing language-level
structures so that users of the Calyx debugger can view data
at the level of data structures instead of ports. Second, we
are integrating Calyx with the CIRCT [13] ecosystem which
represents a united effort to build an open-source hardware
infrastructure. While we’ve already made substantial progress,
by making CIRCT a first-class citizen in the Calyx ecosystem,
we will enable the wider software compiler to build robust
hardware accelerator generators. Finally, we plan to formalize
the semantics of Calyx and implement automatic verification
technologies on top of it. Such verification tools can benefit
from the explicit control-flow representation of Calyx to scale
better than purely hardware-focused verification tools.

VI. CONCLUSION

Calyx represents a step towards a future where designing
hardware accelerator takes a weekend instead of months.
We believe that by bridging the gap between domain-experts
and hardware accelerators represents a step forward in the
ambitious goal of accelerator ubiquity.



REFERENCES

[1] Google, “SkyWater open source PDK,” 2021, https://github.com/google/
skywater-pdk.

[2] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization (CGO), 2004.

[3] R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure
for accelerator generators,” in ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2021.

[4] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,
A. Sampson, and Z. Zhang, “Predictable accelerator design with time-
sensitive affine types,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2020.

[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated end-to-end
optimizing compiler for deep learning,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[6] A. M. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
FIRRTL ground: Hardware construction languages, compiler frame-

works, and transformations,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017.

[7] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A multi-
level intermediate representation for hardware description languages,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2020.

[8] S.-H. Wang, A. Sridhar, and J. Renau, “LNAST: A language neutral
intermediate representation for hardware description languages,” in
Second Workshop on Open-Source EDA Technology (WOSET), 2019.

[9] D. Grunwald and H. Srinivasan, “Data flow equations for explicitly par-
allel programs,” in ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 1993.

[10] S. Beamer and D. Donofrio, “Efficiently exploiting low activity factors
to accelerate rtl simulation,” in Design Automation Conference (DAC),
2020.

[11] Veripool, “Verilator,” 2021, https://www.veripool.org/wiki/verilator.
[12] Louis-Noel Pouchet. (2021) PolyBench/C: The Polyhedral Benchmark

Suite. [Online]. Available: http://web.cse.ohio-state.edu/∼pouchet.2/
software/polybench/

[13] The CIRCT authors, “CIRCT: Circuit IR compilers and tools,” 2021,
https://github.com/llvm/circt.

https://github.com/google/skywater-pdk
https://github.com/google/skywater-pdk
https://www.veripool.org/wiki/verilator
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/llvm/circt

	Introduction
	The Calyx Intermediate Language
	Groups and Control

	Reusable Optimizations
	Interactive Debugger
	Future Work
	Conclusion
	References

